-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_ground_metric.py
33 lines (28 loc) · 1.09 KB
/
plot_ground_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy as np
from mne import SourceEstimate as STC
from matplotlib import cm
import config
from simulate import get_ready_parcels
if __name__ == "__main__":
M = np.load("data/ground_metric.npy")
subjects_dir = config.get_subjects_dir_subj("sample")
subject = "fsaverage"
annot = "aparc_sub"
parcels = get_ready_parcels(subjects_dir, annot)
# pick some parcel
idx = 17
xx = parcels[idx]
dists = M[idx]
# set all max_dists to the same dark red color
n_ones = (dists == 1.).sum()
colors = cm.Reds(np.linspace(0., 1., len(parcels) - n_ones))
colors = np.concatenate([colors, cm.Reds(np.ones(n_ones))])
# create some empty stc
stc0 = STC(data=np.zeros((1, 1)), vertices=[np.array([]), np.array([0])],
tmin=0, tstep=1)
brain = stc0.plot(subject, hemi="both", subjects_dir=subjects_dir)
for ii, color in zip(np.argsort(dists), colors):
hemi = parcels[ii].name[-2:]
brain.add_label(parcels[ii], hemi=hemi, borders=True, color=color)
brain.show_view("frontal")
brain.save_image("data/ground_metric.png")