-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
123 lines (92 loc) · 5.12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch.optim as optim
from torch import nn
from network.model import get_model
import torch
import numpy as np
import os
from utils.logger import Log
from datetime import datetime
from loguru import logger as printer
from utils.util import EarlyStopper
# os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
class TrainManager:
def __init__(self, train_loader, test_loader, device, **kwargs):
self.kwargs = kwargs
self.exp_path = os.path.join(self.kwargs["log_dir"],self.kwargs["exp_name"])
self.model = get_model(kwargs["model_name"], device, self.kwargs)
self.train_loader = train_loader
self.test_loader = test_loader
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, 'min')
self.criterion = nn.CrossEntropyLoss()
self.device = device
self.early_stopper = EarlyStopper(patience=kwargs["patience"])
self.best_loss = float("inf")
self.log = Log(kwargs, kwargs["logger_name"],kwargs["logging_active"], self.exp_path)
if self.kwargs["load_model"]:
splits = self.kwargs["load_model_path"].split("__")
load_epoch = int(splits[0].split("_")[-1])
load_iter = int(splits[1].split("_")[-1])
self.train_index = load_iter * load_epoch
self.batch_start = load_iter
self.epoch_start = load_epoch
else:
self.train_index = 0
self.epoch_start = 1
self.batch_start = 0
self.test_index = 0
def train(self):
for epoch in range(self.epoch_start, self.kwargs["epochs"]+1):
print("-----------------")
print("# Train Epoch:", epoch)
print("-----------------")
for batch_idx, batch in enumerate(self.train_loader, self.batch_start+1):
self.train_index += 1
self.model.train()
data, label = batch["data"].to(self.device), batch["label"].to(self.device)
self.optimizer.zero_grad()
output = self.model(data)
loss = self.criterion(output, label)
loss.backward()
self.optimizer.step()
if self.train_index % self.kwargs["vis_print_per_iter"] == 0:
self.log.logger.log_image(data, self.train_index, stage="Train")
printer.info(f"Epoch| batch : {epoch} | {batch_idx} / {len(self.train_loader)} -> Train Loss: {loss.item()}" )
self.log.logger.log_scaler({"Train/CrossEntropyLoss": loss.item()}, self.train_index)
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
acc = pred.eq(label.view_as(pred)).sum().item()/pred.shape[0]
self.log.logger.log_scaler({"Train/Accuracy": acc}, self.train_index)
if self.train_index % self.kwargs["test_per_iter"] == 0:
val_loss, val_acc = self.test()
if self.early_stopper.early_stop(val_loss):
printer.warning("Early Stopping")
exit("Program stopped by Early Stopping")
self.scheduler.step(val_loss)
if val_loss < self.best_loss and self.kwargs["logging_active"]:
self.best_loss = val_loss
self.log.logger.log_model(self.model, epoch, batch_idx, round(self.best_loss,4), val_acc)
printer.info("Model saved")
printer.info(f"Best Loss: {self.best_loss} | Accuracy: {val_acc}")
print("End of the Training :)")
def test(self):
printer.info("Testing ...")
self.model.eval()
test_loss = []
test_acc = []
with torch.no_grad():
for batch_idx, batch in enumerate(self.test_loader):
self.test_index += 1
data, label = batch["data"].to(self.device), batch["label"].to(self.device)
output = self.model(data)
loss = self.criterion(output, label)
test_loss.append(loss.item())
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
acc = pred.eq(label.view_as(pred)).sum().item()/pred.shape[0]
test_acc.append(acc)
if self.test_index % self.kwargs["vis_print_per_iter"] == 0:
self.log.logger.log_image(data, self.train_index, stage="Test")
self.log.logger.log_scaler({"Test/CrossEntropyLoss": loss.item()}, self.test_index )
self.log.logger.log_scaler({"Test/Accuracy": acc}, self.train_index)
printer.info(f"Mean Test Loss: {np.mean(test_loss)}")
printer.info(f"Mean Test Accuracy: {np.mean(test_acc)}")
return np.mean(test_loss), np.mean(test_acc)