-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
50 lines (37 loc) · 1.31 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torchvision.transforms as T
from PIL import Image
import argparse
from network.model import get_model
import torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Trainer')
parser.add_argument('--model_name', default="EfficientNetB3Pretrained")
parser.add_argument('--model_path', default="logs/exp_2/tb_2022_11_11-03:19:29_PM/models/net_best_epoch_1__iter_80__loss_1.3364__acc_0.45.pth")
parser.add_argument('--device', default="cuda")
parser.add_argument('--image_path', default="data/preprocessed_images/0_left.jpg")
args = parser.parse_args()
params = vars(args)
print(params)
model = get_model(args.model_name, args.device, {})
model.load_state_dict(torch.load(args.model_path))
model.eval()
img_transform= T.Compose([
T.Resize((224, 224)),
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
classes = {
0 : "N",
1 : "D",
2 : "G",
3 : "C",
4 : "A",
5 : "H",
6 : "M",
7 : "O"
}
img = Image.open(args.image_path)
img = img_transform(img).unsqueeze(0).to(args.device)
output = model(img)
pred = output.argmax(dim=1, keepdim=True).item()
print("Prediction : ",classes[pred])