-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathsupplemental.Rmd
1197 lines (870 loc) · 27 KB
/
supplemental.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# (PART\*) Other {-}
```{r suppsetup, include = FALSE, cache=FALSE}
# pretty much nothing can be done to get bookdown to use the correct environment
# library(reticulate)
# use_condaenv('r-reticulate')
knitr::opts_chunk$set(eval = F)
```
# Supplemental
## Other Languages
When doing some of these models and algorithms, I had some other code to work with in another language, or, at the time, just wanted to try it in that language. There is not a whole lot here, but it still may be useful to some. Refer to the corresponding chapter of R code for context.
## Python Demos
### Linear Regression {#python-linreg}
#### Data Setup
```{python py-linreg-setup, eval=F}
import numpy as np
import pandas as pd
from scipy.stats import norm
from scipy.optimize import minimize
np.random.seed(123) # ensures replication
# predictors and response
# increasing N will get estimated values closer to the known parameters
N = 1000 # sample size
k = 2 # number of desired predictors
X = np.matrix(np.random.normal(size = N * k)).reshape(N, k)
y = -.5 + .2*X[:, 0] + .1*X[:, 1] + np.random.normal(scale = .5, size = N).reshape(N, 1)
dfXy = pd.DataFrame(np.column_stack([X, y]), columns = ['X1', 'X2', 'y'])
```
#### Functions
A maximum likelihood approach.
```{python py-linreg-ml, eval=F}
def lm_ml(par, X, y):
# par: parameters to be estimated
# X: predictor matrix with intercept column
# y: response
# setup
beta = par[1:].reshape(X.shape[1], 1) # coefficients
sigma = par[0] # error sd
# N = X.shape[0]
# linear predictor
LP = X * beta # linear predictor
mu = LP # identity link in the glm sense
# calculate likelihood
L = norm.logpdf(y, loc = mu, scale = sigma) # log likelihood; or use norm.logpdf
# L = -.5*N*log(sigma2) - .5*(1/sigma2)*crossprod(y-mu) # alternate log likelihood form
L = -np.sum(L) # optim by default is minimization, and we want to maximize the likelihood
return(L)
```
An approach via least squares loss function.
```{python py-linreg-ls, eval=F}
def lm_ls(par, X, y):
# par: parameters to be estimated
# X: predictor matrix with intercept column
# y: response
# setup
beta = par.reshape(3, 1) # coefficients
N = X.shape[0]
p = X.shape[1]
# linear predictor
LP = X * beta # linear predictor
mu = LP # identity link in the glm sense
#
# # squared error loss
#
return(np.sum(np.square(y - mu)))
```
#### Estimation
```{python linreg-est, eval=F}
X_mm = np.column_stack([np.repeat(1, N).reshape(N, 1), X])
# you may get warnings, they can be ignored
fit_ml = minimize(
fun = lm_ml,
x0 = [1, 0, 0, 0],
args = (X_mm, y),
bounds = ((0, None), (None, None), (None, None), (None, None)),
method = 'L-BFGS-B',
tol = 1e-12,
options = {'maxiter': 500}
)
# can use least_squares directly
# from scipy.optimize import least_squares
fit_ls = minimize(
lm_ls,
x0 = np.array([0, 0, 0]),
args = (X_mm, y),
tol = 1e-12,
options = {'maxiter': 500}
)
```
#### Comparison
```{python py-linreg-compare, eval=F}
import statsmodels.formula.api as smf
model_sm_ols = smf.ols('y ~ X1 + X2', data = dfXy)
fit_sm_ols = model_sm_ols.fit()
pd.DataFrame(
[
np.append(fit_ml.x[0]**2, fit_ml.x[1:]),
np.append(fit_ls.fun/(N - X_mm.shape[1] - 1), fit_ls.x),
np.append(fit_sm_ols.scale, fit_sm_ols.params)
],
columns = ['sigma','Int', 'b_X1', 'b_X2'],
index = ['ML', 'OLS', 'SM']
)
```
```{r py-linreg-results, eval=T, echo=FALSE}
cat("
sigma Int b_X1 b_X2
ML 0.240332 -0.494647 0.213036 0.0815
OLS 0.241297 -0.494647 0.213036 0.0815
SM 0.241055 -0.494647 0.213036 0.0815
")
```
### Logistic Regression {#python-logreg}
#### Data Setup
```{python py-logreg-setup, eval=F}
import numpy as np
import pandas as pd
from scipy.stats import logistic, binom
from scipy.optimize import minimize
np.random.seed(123) # ensures replication
# predictors and response
# increasing N will get estimated values closer to the known parameters
N = 2500 # sample size
k = 2 # number of desired predictors
X = np.matrix(np.random.normal(size = N * k)).reshape(N, k)
eta = -.5 + .2*X[:, 0] + .1*X[:, 1]
pi = 1/(1 + np.exp(-eta))
y = np.random.binomial(1, p = pi, size = (N, 1))
dfXy = pd.DataFrame(np.column_stack([X, y]), columns = ['X1', 'X2', 'y'])
```
#### Functions
A maximum likelihood approach.
```{python py-logreg_ml, eval=F}
def logreg_ml(par, X, y):
# par: parameters to be estimated
# X: predictor matrix with intercept column
# y: response
# setup
beta = par.reshape(X.shape[1], 1) # coefficients
# N = X.shape[0]
# linear predictor
LP = np.dot(X, beta) # linear predictor
mu = 1/(1 + np.exp(-LP)) # logit link
# calculate likelihood
L = binom.logpmf(y, 1, mu) # log likelihood
# L = np.multiply(y, np.log(mu)) + np.multiply(1 - y, np.log(1 - mu)) # alternate log likelihood form
L = -np.sum(L) # optim by default is minimization, and we want to maximize the likelihood
return(L)
```
Another approach via exponential loss function.
```{python py-logreg_exp, eval=F}
def logreg_exp(par, X, y):
# Arguments
# par: parameters to be estimated
# X: predictor matrix with intercept column
# y: target
# setup
beta = par.reshape(X.shape[1], 1) # coefficients
# linear predictor
LP = np.dot(X, beta) # linear predictor
# calculate exponential loss function (convert y to -1:1 from 0:1)
L = np.sum(np.exp(-np.multiply(np.where(y, 1, -1), LP) * .5))
return(L)
```
#### Estimation
Setup for use with <span class="func" style = "">optim</span>.
```{python py-logreg-est, eval=F}
X_mm = np.column_stack([np.repeat(1, N).reshape(N, 1), X])
fit_ml = minimize(
fun = logreg_ml,
x0 = [0, 0, 0],
args = (X_mm, y),
method = 'BFGS',
tol = 1e-12,
options = {'maxiter': 500}
)
fit_exp = minimize(
fun = logreg_exp,
x0 = [0, 0, 0],
args = (X_mm, y),
method = 'BFGS',
tol = 1e-12,
options = {'maxiter': 500}
)
pars_ml = fit_ml.x
pars_exp = fit_exp.x
```
#### Comparison
```{python py-logreg-compare, eval=FALSE}
import statsmodels.formula.api as smf
model_sm_glm = smf.logit('y ~ X1 + X2', data = dfXy)
fit_sm_glm = model_sm_glm.fit()
pd.DataFrame(
[
pars_ml,
pars_exp,
fit_sm_glm.params
],
columns = ['Int', 'b_X1', 'b_X2'],
index = ['fit_ml', 'fit_exp', 'SM']
)
```
```{r py-logreg-results, eval=T, echo=FALSE}
cat("
Int b_X1 b_X2
fit_ml -0.505637 0.234567 0.054700
fit_exp -0.504802 0.231859 0.053134
SM -0.505637 0.234567 0.054700
")
```
### Quantile Regression {#python-qreg}
See the [R chapter][Quantile Regression] for details.
#### Data Setup
```{python py-qreg-setup, eval=FALSE}
import pandas as pd
import numpy as np
# originally from quantreg package
engel = pd.read_csv('data/engel.csv')
X = np.column_stack([
np.ones((engel.shape[0],1)),
np.asarray(engel['income'])
])
y = np.asarray(engel['foodexp'])
```
```{python py-qreg-func, eval = F}
def qreg(par, X, y, tau):
lp = np.dot(X, par)
res = y - lp
loss = np.where(res < 0 , -(1 - tau)*res, tau*res)
return(np.sum(loss))
```
#### Estimation
We'll estimate the median to start.
```{python py-qreg-est, eval=FALSE}
# from scipy.stats import logistic, binom
from scipy.optimize import minimize
minimize(
fun = qreg,
x0 = [0, 0],
args = (X, y, .5),
method = 'BFGS',
tol = 1e-12,
options = {'maxiter': 500}
)
```
#### Other quantiles
Now we will add additional quantiles to estimate.
```{python py-qreg-quants}
pandas as pd
# quantiles
qs = [.05, .1, .25, .5, .75, .9, .95]
fit = []
for tau in qs:
init = minimize(
fun = qreg,
x0 = [0, 0],
args = (X, y, tau),
method = 'BFGS',
tol = 1e-12,
options = {'maxiter': 500}
)
fit.append(
pd.DataFrame(init.x.reshape(1,2), columns = ['int', 'slope'])
)
fit_qr = pd.concat(fit)
from plotnine import *
(
ggplot(aes(x = 'income', y = 'foodexp'), data = engel) +
geom_point() +
geom_abline(aes(intercept = 'int', slope = 'slope', color = 'int'),
data = fit_qr)
)
```
### Stochastic Gradient Descent {#python-sgd}
Here we use the *adagrad* approach as in the R demo. The dataset shift and other variants are not demonstrated.
#### Data Setup
Create some data for a standard linear regression.
```{python py-sgd-setup}
import numpy as np
np.random.seed(1234)
n = 10000
x1 = np.random.normal(size = n)
x2 = np.random.normal(size = n)
y = 1 + .5*x1 + .2*x2 + np.random.normal(size = n)
X = np.column_stack([np.ones(n), x1, x2])
```
#### Function
The estimating function using the *adagrad* approach.
```{python py-sgd-func}
def sgd(par, X, y, stepsize, stepsize_tau = 0, average = False):
"""
Estimate a linear regression via stochastic gradient descent
par: parameter estimates
X: model matrix
y: target variable
stepsize: the learning rate
stepsize_tau: if > 0, a check on the LR at early iterations
average: an alternative method
Returns a dictionary of the parameter estimates, the estimates for each iteration,
the loss for each iteration, the root mean square error, and the fitted values
using the final parameter estimates
"""
beta = par
betamat = np.zeros_like(X)
fits = np.zeros_like(y) # if you want these across iterations
loss = np.zeros_like(y)
s = 0
for i in np.arange(X.shape[0]):
Xi = X[i]
yi = y[i]
LP = np.dot(Xi, beta)
grad = np.dot(Xi.T, LP - yi)
s = s + grad**2
beta -= stepsize * grad/(stepsize_tau + np.sqrt(s))
if average and i > 1:
beta -= 1/i * (betamat[i - 1] - beta)
betamat[i] = beta
fits[i] = LP
loss[i] = (LP - yi)**2
LP = np.dot(X, beta)
lastloss = np.dot(LP - y, LP - y)
return({
'par': beta, # final estimates
'par_chain': betamat, # all estimates
'loss': loss, # observation level loss
'RMSE': np.sqrt(np.sum(lastloss)/X.shape[0]),
'fitted': LP
})
```
Set starting values and estimate. For any particular data you might have to fiddle with the `stepsize`, perhaps
choosing one based on cross-validation with old data.
```{python py-sgd-est}
init = np.zeros(3)
fit_sgd = sgd(
init,
X,
y,
stepsize = .1,
stepsize_tau = .5
)
fit_sgd['par'].round(4)
fit_sgd['RMSE'].round(4)
```
```{r py-sgd-est-show, eval=T, echo=F}
cat("
array([1.0172, 0.4942, 0.1937]) \n
0.9978
")
```
#### Comparison
We'll compare our results to standard linear regression.
```{python py-sgd-compare}
import pandas as pd
import statsmodels.formula.api as smf
df = pd.DataFrame({'x1': x1, 'x2': x2, 'y': y})
lm_fit = smf.ols('y ~ x1 + x2', df).fit()
lm_fit.params.round(4)
lm_fit.scale.round(4)
```
```{r py-sgd-compare-show, eval=T, echo=F}
cat("
Intercept 1.0037
x1 0.5032
x2 0.2000
dtype: float64 \n
0.9955
")
```
### Nelder-Mead {#python-nelder}
```{python py-nelder-mead, eval = FALSE}
import copy
'''
Francois Chollet's Nelder-Mead in Python.
https://github.com/fchollet/nelder-mead/blob/master/nelder_mead.py
Pure Python/Numpy implementation of the Nelder-Mead algorithm.
Reference: https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
'''
def nelder_mead(
f,
x_start,
step = 0.1,
no_improve_thr = 10e-6,
no_improv_break = 10,
max_iter = 0,
alpha = 1.,
gamma = 2.,
rho = 0.5,
sigma = 0.5
):
'''
@param f (function): function to optimize, must return a scalar score
and operate over a numpy array of the same dimensions as x_start
@param x_start (numpy array): initial position
@param step (float): look-around radius in initial step
@no_improv_thr, no_improv_break (float, int): break after no_improv_break iterations with
an improvement lower than no_improv_thr
@max_iter (int): always break after this number of iterations.
Set it to 0 to loop indefinitely.
@alpha, gamma, rho, sigma (floats): parameters of the algorithm
(see Wikipedia page for reference)
return: tuple (best parameter array, best score)
'''
# init
dim = len(x_start)
prev_best = f(x_start)
no_improv = 0
res = [[x_start, prev_best]]
for i in range(dim):
x = copy.copy(x_start)
x[i] = x[i] + step
score = f(x)
res.append([x, score])
# simplex iter
iters = 0
while 1:
# order
res.sort(key=lambda x: x[1])
best = res[0][1]
# break after max_iter
if max_iter and iters >= max_iter:
return res[0]
iters += 1
# break after no_improv_break iterations with no improvement
if iters//10 == 0:
print('...best so far:', best)
if best < prev_best - no_improve_thr:
no_improv = 0
prev_best = best
else:
no_improv += 1
if no_improv >= no_improv_break:
return res[0]
# centroid
x0 = [0.] * dim
for tup in res[:-1]:
for i, c in enumerate(tup[0]):
x0[i] += c / (len(res)-1)
# reflection
xr = x0 + alpha*(x0 - res[-1][0])
rscore = f(xr)
if res[0][1] <= rscore < res[-2][1]:
del res[-1]
res.append([xr, rscore])
continue
# expansion
if rscore < res[0][1]:
xe = x0 + gamma*(x0 - res[-1][0])
escore = f(xe)
if escore < rscore:
del res[-1]
res.append([xe, escore])
continue
else:
del res[-1]
res.append([xr, rscore])
continue
# contraction
xc = x0 + rho*(x0 - res[-1][0])
cscore = f(xc)
if cscore < res[-1][1]:
del res[-1]
res.append([xc, cscore])
continue
# reduction
x1 = res[0][0]
nres = []
for tup in res:
redx = x1 + sigma*(tup[0] - x1)
score = f(redx)
nres.append([redx, score])
res = nres
if __name__ == "__main__":
# test
import math
import numpy as np
def f(x):
return math.sin(x[0]) * math.cos(x[1]) * (1. / (abs(x[2]) + 1))
nelder_mead(f, np.array([0., 0., 0.]))
```
### HMM {#python-hmm}
```{python py-hmm, eval = FALSE}
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
From the wikipedia page with slight modification
https://en.wikipedia.org/wiki/Viterbi_algorithm#Example
"""
def viterbi(obs, states, start_p, trans_p, emit_p):
V = [{}]
for st in states:
V[0][st] = {"prob": start_p[st] * emit_p[st][obs[0]], "prev": None}
# Run Viterbi when t > 0
for t in range(1, len(obs)):
V.append({})
for st in states:
max_tr_prob = max(V[t-1][prev_st]["prob"]*trans_p[prev_st][st] for prev_st in states)
for prev_st in states:
if V[t-1][prev_st]["prob"] * trans_p[prev_st][st] == max_tr_prob:
max_prob = max_tr_prob * emit_p[st][obs[t]]
V[t][st] = {"prob": max_prob, "prev": prev_st}
break
for line in dptable(V):
print(line)
opt = []
# The highest probability
max_prob = max(value["prob"] for value in V[-1].values())
previous = None
# Get most probable state and its backtrack
for st, data in V[-1].items():
if data["prob"] == max_prob:
opt.append(st)
previous = st
break
# Follow the backtrack till the first observation
for t in range(len(V) - 2, -1, -1):
opt.insert(0, V[t + 1][previous]["prev"])
previous = V[t + 1][previous]["prev"]
print('The steps of states are ' + ' '.join(opt) + ' with highest probability of %s' % max_prob)
def dptable(V):
# Print a table of steps from dictionary
yield " ".join(("%12d" % i) for i in range(len(V)))
for state in V[0]:
yield "%.7s: " % state + " ".join("%.7s" % ("%f" % v[state]["prob"]) for v in V)
# The function viterbi takes the following arguments: obs is the sequence of
# observations, e.g. ['normal', 'cold', 'dizzy']; states is the set of hidden
# states; start_p is the start probability; trans_p are the transition
# probabilities; and emit_p are the emission probabilities. For simplicity of
# code, we assume that the observation sequence obs is non-empty and that
# trans_p[i][j] and emit_p[i][j] is defined for all states i,j.
# In the running example, the forward/Viterbi algorithm is used as follows:
obs = ('normal', 'cold', 'dizzy')
states = ('Healthy', 'Fever')
start_p = {'Healthy': 0.6, 'Fever': 0.4}
trans_p = {
'Healthy' : {'Healthy': 0.7, 'Fever': 0.3},
'Fever' : {'Healthy': 0.4, 'Fever': 0.6}
}
emit_p = {
'Healthy' : {'normal': 0.5, 'cold': 0.4, 'dizzy': 0.1},
'Fever' : {'normal': 0.1, 'cold': 0.3, 'dizzy': 0.6}
}
viterbi(obs,states,start_p,trans_p,emit_p)
```
## Julia Demos
I haven't played with Julia in a very long time, but briefly hacked the old code to get something that worked. As Julia has gone though notable changes, it's doubtful these are very good as far as Julia programming standards go, though conceptually they may still provide some utility. Perhaps at some point I'll reteach myself the basics and come back to these. In any case the code did run on a [Jupyter notebook](https://jupyter.org/).
### Mixed Models
#### One-factor
```{julia jl-one-factor-func, eval = FALSE}
#####################
### Main function ###
#####################
using LinearAlgebra
using Statistics
function one_factor_re_loglike(par::Vector)
d, ni = size(y)
mu = par[1]
sigma2_mu = par[2]
sigma2 = par[3]
Sigmai = sigma2*I(ni) + sigma2_mu*ones(ni, ni)
l = -(ni*d)/2*log(2*pi) - d/2*log(det(Sigmai))
for i in 1:d
yi = y[i,:]
l = l - .5(yi .- mu)' * (Sigmai\(yi .- mu))
end
l = -l[1]
return l
end
```
```{julia jl-one-factor-setup, eval = FALSE}
###################
### Data set up ###
###################
y = [22.6 20.5 20.8
22.6 21.2 20.5
17.3 16.2 16.6
21.4 23.7 23.2
20.9 22.2 22.6
14.5 10.5 12.3
20.8 19.1 21.3
17.4 18.6 18.6
25.1 24.8 24.9
14.9 16.3 16.6]
################################
### Starting values and test ###
################################
using Statistics
mu0 = mean(y)
sigma2_mu0 = var(mean(y, dims = 2))
sigma20 = mean(var(y, dims = 2))
theta0 = [mu0, sigma2_mu0, sigma20]
### test
one_factor_re_loglike(theta0)
```
```{julia jl-onefactor-est, eval = FALSE}
###########
### Run ###
###########
using Optim
res = optimize(one_factor_re_loglike, theta0, LBFGS())
res
```
```{r julia-one-factor-res, echo=FALSE, eval=TRUE}
cat(
"
* Status: success
* Candidate solution
Final objective value: 6.226441e+01
* Found with
Algorithm: L-BFGS
* Convergence measures
|x - x'| = 2.93e-08 ≰ 0.0e+00
|x - x'|/|x'| = 1.49e-09 ≰ 0.0e+00
|f(x) - f(x')| = 1.42e-14 ≰ 0.0e+00
|f(x) - f(x')|/|f(x')| = 2.28e-16 ≰ 0.0e+00
|g(x)| = 1.17e-09 ≤ 1.0e-08
* Work counters
Seconds run: 1 (vs limit Inf)
Iterations: 7
f(x) calls: 22
∇f(x) calls: 22
"
)
```
```{julia jl-onefactor-res1, eval = FALSE}
Optim.minimizer(res)
```
```{r julia-onefactor-res1, echo=FALSE, eval=TRUE}
cat("
3-element Array{Float64,1}:
19.599999980440952
12.193999992338886
1.1666666662195693
")
```
```{julia jl-onefactor-res2, eval = FALSE}
Optim.minimum(res)
```
```{r julia-onefactor-res2, echo = FALSE, eval=TRUE}
cat('62.30661224610756')
```
#### Two-factor
```{julia jl-two-factor-func, eval = FALSE}
using LinearAlgebra
using Statistics
function sfran2_loglike(par::Vector)
n = length(y)
mu = par[1]
sigma2_alpha = exp(par[2])
sigma2_gamma = exp(par[3])
sigma2 = exp(par[4])
Sigma = sigma2*I(n) + sigma2_alpha*(Xalpha * Xalpha') + sigma2_gamma * (Xgamma * Xgamma')
l = -n/2*log(2*pi) - sum(log.(diag(cholesky(Sigma).L))) - .5*(y .- mu)' * (Sigma\(y .- mu))
l = -l[1]
return l
end
```
```{julia jl-two-factor-setup, eval = FALSE}
##################
### Data setup ###
##################
y = [1.39,1.29,1.12,1.16,1.52,1.62,1.88,1.87,1.24,1.18,
.95,.96,.82,.92,1.18,1.20,1.47,1.41,1.57,1.65]
################################
### Starting values and test ###
################################
yhat = mean(reshape(y, 4, 5), 1)
theta0 = [mean(y), log(var(yhat)), log(var(y)/3), log(var(y)/3)]
sfran2_loglike(theta0)
```
```{julia jl-twofactor-res, eval = FALSE}
###########
### Run ###
###########
using Optim
res = optimize(sfran2_loglike, theta0, method = :l_bfgs)
res
```
```{r julia-twofactor-res0, echo = FALSE, eval=TRUE}
cat(
"
* Status: success
* Candidate solution
Final objective value: -1.199315e+01
* Found with
Algorithm: L-BFGS
* Convergence measures
|x - x'| = 6.60e-09 ≰ 0.0e+00
|x - x'|/|x'| = 1.08e-09 ≰ 0.0e+00
|f(x) - f(x')| = 5.33e-15 ≰ 0.0e+00
|f(x) - f(x')|/|f(x')| = 4.44e-16 ≰ 0.0e+00
|g(x)| = 7.02e-10 ≤ 1.0e-08
* Work counters
Seconds run: 0 (vs limit Inf)
Iterations: 9
f(x) calls: 23
∇f(x) calls: 23
")
```
```{julia jl-twofactor-res1, eval=FALSE}
exp.(Optim.minimizer(res))
```
```{r julia-twofactor-res1, echo = FALSE, eval=TRUE}
cat(
"
4-element Array{Float64,1}:
3.7434213772629223
0.053720000000540405
0.031790000003692476
0.002290000000530042
"
)
```
```{julia jl-twofactor-res2, eval = FALSE}
-2*Optim.minimum(res)
```
```{r julia-twofactor-res2, echo = FALSE, eval=TRUE}
cat(
"23.98630759443859"
)
```
## Matlab Demos
I don't code in Matlab, nor have any particular desire to, so this is provided here just for reference because I happened to have the code.
### Mixed Models