-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathprobit.Rmd
183 lines (123 loc) · 3.8 KB
/
probit.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Probit & Bivariate Probit
Stata users seem to be the primary audience concerned with probit models, but I
thought I'd play around with one even though I've never had reason to use it.
Stata examples come from the UCLA ATS website and the Stata manual, so one can
investigate the Stata result for comparison.
## Standard Probit
The standard probit model is identical to the [logistic model][Logistic
Regression] but using a different link function.
### Function
```{r probit_ll}
probit_ll <- function(beta, X, y) {
mu = X %*% beta
# these produce identical results, but the second is the typical depiction
ll = sum(dbinom(
y,
size = 1,
prob = pnorm(mu),
log = T
))
# ll = sum(y * pnorm(mu, log = T) + (1 - y) * log(1 - pnorm(mu)))
-ll
}
```
### Examples
Example 1 detail available [here](https://stats.idre.ucla.edu/stata/dae/probit-regression/).
```{r probit-example-1}
library(tidyverse)
admit = haven::read_dta('https://stats.idre.ucla.edu/stat/stata/dae/binary.dta')
head(admit)
X = model.matrix(admit~ gre + gpa + factor(rank), admit)
y = admit$admit
init = rep(0, ncol(X))
fit = optim(
fn = probit_ll,
par = init,
X = X,
y = y,
method = 'BFGS'
)
fit
```
Example 2 from Stata manual on [standard probit](http://www.stata.com/manuals13/rprobit.pdf).
> We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles. We wish to fit a probit model explaining whether a car is foreign based on its weight and mileage."
```{r probit-example-2}
auto = haven::read_dta('http://www.stata-press.com/data/r13/auto.dta')
head(auto)
X = model.matrix(foreign~ weight + mpg, auto)
y = auto$foreign
init = rep(0, ncol(X))
fit = optim(
fn = probit_ll,
par = init,
X = X,
y = y
)
fit
```
## Bivariate Probit
For the bivariate model, we are dealing with two binary outcomes and their correlation.
Here is the main function.
```{r bivariate_probit_ll}
bivariate_probit_ll <- function(pars, X, y1, y2) {
rho = pars[1]
mu1 = X %*% pars[2:(ncol(X) + 1)]
mu2 = X %*% pars[(ncol(X) + 2):length(pars)]
q1 = ifelse(y1 == 1, 1,-1)
q2 = ifelse(y2 == 1, 1,-1)
require(mnormt)
eta1 = q1 * mu1
eta2 = q2 * mu2
ll = matrix(NA, nrow = nrow(X))
for (i in 1:length(ll)) {
corr = q1[i] * q2[i] * rho
corr = matrix(c(1, corr, corr, 1), 2)
ll[i] = log(
pmnorm(
x = c(eta1[i], eta2[i]),
mean = c(0, 0),
varcov = corr
)
)
}
# the loop is probably clearer, and there is no difference in time, but here's
# a oneliner ll = mapply(function(e1, e2, q1, q2) log(pmnorm(x = c(e1, e2),
# varcov = matrix(c(1,q1*q2*rho,q1*q2*rho,1),2))), eta1, eta2, q1, q2)
-sum(ll)
}
```
### Example
From the Stata manual on bivariate probit:
> We wish to model the bivariate outcomes of whether children attend private
school and whether the head of the household voted for an increase in property
tax based on the other covariates.
```{r probit-example-3}
school = haven::read_dta('http://www.stata-press.com/data/r13/school.dta')
head(school)
X = model.matrix(private ~ years + logptax + loginc, school)
y1 = school$private
y2 = school$vote
init = c(0, rep(0, ncol(X)*2))
# you'll probably get a warning or two, ignore; takes a couple seconds
fit = optim(
fn = bivariate_probit_ll,
par = init,
X = X,
y1 = y1,
y2 = y2,
method = 'BFGS'
)
loglik = fit$value
rho = fit$par[1]
coefs_private = fit$par[2:(ncol(X) + 1)]
coefs_vote = fit$par[(ncol(X) + 2):length(init)]
names(coefs_private) = names(coefs_vote) = c('Int', 'years', 'logptax', 'loginc')
list(
loglik = loglik,
rho = rho,
Private = coefs_private,
Vote = coefs_vote
)
```
## Source
Original code available at https://github.com/m-clark/Miscellaneous-R-Code/blob/master/ModelFitting/bivariateProbit.R