-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathem-ssm.Rmd
204 lines (151 loc) · 4.98 KB
/
em-ssm.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
## State Space Model
The following regards chapter 11 in Statistical Modeling and Computation, the
first example for an unobserved components model. The data regards inflation
based on the U.S. consumer price index ($\textrm{infl} = 400*log(cpi_t/cpi_{t-1})$), from
the second quarter of 1947 to the second quarter of 2011. You can acquire the
data [here](http://www.maths.uq.edu.au/~kroese/statbook/Statespace/USCPI.csv) or
in [Datasets repo](https://github.com/m-clark/Datasets). Just note that it has 2
mystery columns and one mystery row presumably supplied by Excel. You can also
get the CPI data yourself at the [Bureau of Labor
Statistics](http://www.bls.gov/cpi/) in a frustrating fashion, or in a much
easier fashion [here](https://fred.stlouisfed.org/series/CPIAUCSL).
For the following I use `n` instead of `t` or `T` because those are transpose and `TRUE`
in R. The model is basically y = τ + ϵ, with ϵ ~ N(0, σ^2^), and τ = τ<sub>n-1<sub> +
υ_n with υ ~ N(0, ω^2^). Thus each y is associated with a latent variable that
follows a random walk over time. ω^2^ serves as a smoothing parameter, which
itself may be estimated but which is fixed in the following. See the text for
more details.
### Data Setup
```{r em-ssm-setup}
library(tidyverse)
d = read_csv(
'https://raw.githubusercontent.com/m-clark/Datasets/master/us%20cpi/USCPI.csv',
col_names = FALSE
)
inflation = as.matrix(d$X1)
summary(inflation)
```
### Function
EM function for a state space model.
```{r em-ssm}
em_state_space <- function(
params,
y,
omega2_0,
omega2,
tol = .00001,
maxits = 100,
showits = FALSE
) {
# Arguments
# params: starting parameters (variance as 'sigma2'),
# y: data,
# tol: tolerance,
# omega2: latent variance (2_0) is a noisier starting variance
# maxits: maximum iterations
# showits: whether to show iterations
# Not really needed here, but would be a good idea generally to take advantage
# of sparse representation for large data
# require(spam) # see usage below
# Starting points
n = length(y)
sigma2 = params$sigma2
# Other initializations
H = diag(n)
for (i in 1:(ncol(H) - 1)) {
H[i + 1, i] = -1
}
Omega2 = spam::as.spam(diag(omega2, n))
Omega2[1, 1] = omega2_0
H = spam::as.spam(H)
HinvOmega2H = t(H) %*% spam::chol2inv(spam::chol(Omega2)) %*% H # tau ~ N(0, HinvOmmega2H^-1)
it = 0
converged = FALSE
if (showits) # Show iterations
cat(paste("Iterations of EM:", "\n"))
while ((!converged) & (it < maxits)) {
sigma2Old = sigma2[1]
Sigma2invOld = diag(n)/sigma2Old
K = HinvOmega2H + Sigma2invOld # E
tau = solve(K, y/sigma2Old) # tau|y, sigma2_{n-1}, omega2 ~ N(0, K^-1)
K_inv_tr = sum(1/eigen(K)$values)
sigma2 = 1/n * (K_inv_tr + crossprod(y-tau)) # M
converged = max(abs(sigma2 - sigma2Old)) <= tol
it = it + 1
# if showits true, & it =1 or divisible by 5 print message
if (showits & it == 1 | it%%5 == 0)
cat(paste(format(it), "...", "\n", sep = ""))
}
Kfinal = HinvOmega2H + diag(n) / sigma2[1]
taufinal = solve(K, (y / sigma2[1]))
list(sigma2 = sigma2, tau = taufinal)
}
```
### Estimation
```{r em-ssm-est}
ss_mod_1 = em_state_space(
params = data.frame(sigma2 = var(inflation)),
y = inflation,
tol = 1e-10,
omega2_0 = 9,
omega2 = 1^2
)
ss_mod_.5 = em_state_space(
params = data.frame(sigma2 = var(inflation)),
y = inflation,
tol = 1e-10,
omega2_0 = 9,
omega2 = .5^2
)
# more smooth
ss_mod_.1 = em_state_space(
params = data.frame(sigma2 = var(inflation)),
y = inflation,
tol = 1e-10,
omega2_0 = 9,
omega2 = .1^2
)
ss_mod_1$sigma2
ss_mod_.5$sigma2
ss_mod_.1$sigma2
```
### Visualization
```{r em-ssm-vis-setup}
library(lubridate)
series = ymd(
paste0(
rep(1947:2014, e = 4),
'-',
c('01', '04', '07', '10'),
'-',
'01')
)
```
The following corresponds to Fig. 11.1 in the text. We'll also compare to generalized additive model via <span class="func" style = "">geom_smooth</span> (greenish line). We can see the .1 model (light blue) is overly smooth.
```{r em-ssm-vis}
library(tidyverse)
data.frame(
series = series[1:length(inflation)],
inflation = inflation,
Mod_1 = ss_mod_1$tau,
Mod_.5 = ss_mod_.5$tau,
Mod_.1 = ss_mod_.1$tau
) %>%
ggplot(aes(x = series, y = inflation)) +
geom_point(color = 'gray50', alpha = .25) +
geom_line(aes(y = Mod_1), color = '#ff5500') +
geom_line(aes(y = Mod_.5), color = '#9E1B34') +
geom_line(aes(y = Mod_.1), color = '#00aaff') +
geom_smooth(
formula = y ~ s(x, bs = 'gp', k = 50),
se = FALSE,
color = '#1b9e86',
method = 'gam',
size = .5
) +
scale_x_date(date_breaks = '10 years') +
labs(x = '')
```
### Source
Original code found at
https://github.com/m-clark/Miscellaneous-R-Code/blob/master/ModelFitting/EM%20Examples/EM%20for%20state%20space%20unobserved%20components.R