Given an array A
of integers, a ramp is a tuple (i, j)
for which i < j
and A[i] <= A[j]
. The width of such a ramp is j - i
.
Find the maximum width of a ramp in A
. If one doesn't exist, return 0.
Example 1:
Input: [6,0,8,2,1,5] Output: 4 Explanation: The maximum width ramp is achieved at (i, j) = (1, 5): A[1] = 0 and A[5] = 5.
Example 2:
Input: [9,8,1,0,1,9,4,0,4,1] Output: 7 Explanation: The maximum width ramp is achieved at (i, j) = (2, 9): A[2] = 1 and A[9] = 1.
Note:
2 <= A.length <= 50000
0 <= A[i] <= 50000
Related Topics:
Array
Consider the array ends with 4, 1, 2
. For the a number n
in front:
- If
n <= 2
, we use the last2
to form the ramp. The last1
won't be used. - If
2 < n <= 4
, we use the last4
to form the ramp.
So we can traverse from rear to front, and save the numbers in ascending order:
numbers: [2, 4]
indexes: [N - 1, N - 3]
Then we traverse from front to rear, use lower_bound
to find the smallest number greater than the current A[i]
. The corresponding index
can be used form a ramp.
// OJ: https://leetcode.com/problems/maximum-width-ramp/
// Author: github.com/lzl124631x
// Time: O(NlogN)
// Space: O(N)
class Solution {
public:
int maxWidthRamp(vector<int>& A) {
int N = A.size(), ans = 0;
vector<int> v, index;
for (int i = N - 1; i >= 0; --i) {
if (v.empty() || v.back() < A[i]) {
v.push_back(A[i]);
index.push_back(i);
}
}
for (int i = 0; i < N; ++i) {
int ind = lower_bound(v.begin(), v.end(), A[i]) - v.begin();
ans = max(ans, index[ind] - i);
}
return ans;
}
};