Given a positive integer n, break it into the sum of at least two positive integers and maximize the product of those integers. Return the maximum product you can get.
Example 1:
Input: 2 Output: 1 Explanation: 2 = 1 + 1, 1 × 1 = 1.
Example 2:
Input: 10 Output: 36 Explanation: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.
Note: You may assume that n is not less than 2 and not larger than 58.
Related Topics:
Math, Dynamic Programming
Assume the result is F(n)
. We can try different partition of n
, from 1, n-1
, 2, n-2
to ceil(sqrt(n)), n - ceil(sqrt(n))
.
// OJ: https://leetcode.com/problems/integer-break/
// Author: github.com/lzl124631x
// Time: O(N * sqrt(N))
// Space: O(N)
class Solution {
public:
int integerBreak(int n) {
vector<int> memo(59, 0);
memo[1] = 1;
for (int i = 2; i <= n; ++i)
for (int j = 1, b = ceil(sqrt(i)); j <= b; ++j)
memo[i] = max(memo[i], max(j, memo[j]) * max(i - j, memo[i - j]));
return memo[n];
}
};
Try to find pattern.
F(2) = 1
F(3) = 1*2 = 2
F(4) = 2*2 = 4
F(5) = 2*3 = 6
F(6) = 3*3 = 9
F(7) = 2*2*3 = 12 = F(4) * 3
F(8) = 2*3*3 = 18 = F(5) * 3
F(9) = 3*3*3 = 27 = F(6) * 3
F(10) = 2*2*3*3 = 36 = F(7) * 3
...
2 and 3 are the only two factors used.
4 is not used since we can use 2*2
instead.
5 is not used since if we split 5
into 2, 3
we can get larger result.
And so on.
Since number 5
, we can always factor out 3
first.
So we can compute from F(5)
to F(n)
using F(i) = 3 * max(i - 3, F(i - 3))
.
// OJ: https://leetcode.com/problems/integer-break/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
public:
int integerBreak(int n) {
int dp[max(n + 1, 5)];
dp[0] = 0;
dp[1] = 1;
dp[2] = 1;
dp[3] = 2;
dp[4] = 4;
for (int i = 5; i <= n; ++i)
dp[i] = 3 * max(i - 3, dp[i - 3]);
return dp[n];
}
};
What's the math behind it?
Reference: https://discuss.leetcode.com/topic/43055/why-factor-2-or-3-the-math-behind-this-problem/11
@StefanPochmann:
If an optimal product contains a factorf >= 4
, then you can replace it with factors 2 andf-2
without losing optimality, as2*(f-2) = 2f-4 >= f
. So you never need a factor greater than or equal to 4, meaning you only need factors 1, 2 and 3 (and 1 is of course wasteful and you'd only use it forn=2
andn=3
, where it's needed).
3*3
is simply better than2*2*2
, so you'd never use 2 more than twice.
// OJ: https://leetcode.com/problems/integer-break/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
class Solution {
public:
int integerBreak(int n) {
if (n == 2) return 1;
if (n == 3) return 2;
if (n == 4) return 4;
return 3 * max(n - 3, integerBreak(n - 3));
}
};
How to omit max
?
6 = 3 + 3 and f(3) = 2 so 6 needs max
7 = 3 + 4 and f(4) = 4 so 7 is the first number that doesn't need max
So another version:
// OJ: https://leetcode.com/problems/integer-break/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(N)
// Ref: https://discuss.leetcode.com/topic/43042/easy-to-understand-c-with-explanation
class Solution {
public:
int integerBreak(int n) {
if (n == 2) return 1;
if (n == 3) return 2;
if (n == 4) return 4;
if (n == 5) return 6;
if (n == 6) return 9;
return 3 * integerBreak(n - 3);
}
};
// OJ: https://leetcode.com/problems/integer-break/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
// Ref: https://discuss.leetcode.com/topic/45341/a-simple-explanation-of-the-math-part-and-a-o-n-solution
class Solution {
public:
int integerBreak(int n) {
if (n == 2) return 1;
if (n == 3) return 2;
int p = 1;
while (n > 4) {
p *= 3;
n -= 3;
}
p *= n;
return p;
}
};
// OJ: https://leetcode.com/problems/integer-break/
// Author: github.com/lzl124631x
// Time: O(logN)
// Space: O(1)
class Solution {
public:
int integerBreak(int n) {
if (n <= 3) return n - 1;
if (n % 3 == 0) return pow(3, n / 3);
if (n % 3 == 1) return pow(3, n / 3 - 1) * 2 * 2;
return pow(3, n / 3) * 2;
}
};