You are given an integer array nums
of 2 * n
integers. You need to partition nums
into two arrays of length n
to minimize the absolute difference of the sums of the arrays. To partition nums
, put each element of nums
into one of the two arrays.
Return the minimum possible absolute difference.
Example 1:
Input: nums = [3,9,7,3] Output: 2 Explanation: One optimal partition is: [3,9] and [7,3]. The absolute difference between the sums of the arrays is abs((3 + 9) - (7 + 3)) = 2.
Example 2:
Input: nums = [-36,36] Output: 72 Explanation: One optimal partition is: [-36] and [36]. The absolute difference between the sums of the arrays is abs((-36) - (36)) = 72.
Example 3:
Input: nums = [2,-1,0,4,-2,-9] Output: 0 Explanation: One optimal partition is: [2,4,-9] and [-1,0,-2]. The absolute difference between the sums of the arrays is abs((2 + 4 + -9) - (-1 + 0 + -2)) = 0.
Constraints:
1 <= n <= 15
nums.length == 2 * n
-107 <= nums[i] <= 107
Similar Questions:
- Partition Equal Subset Sum (Medium)
- Split Array With Same Average (Hard)
- Tallest Billboard (Hard)
- Last Stone Weight II (Medium)
- Closest Subsequence Sum (Hard)
We select k
elements from the first half (left part) whose sum is a
and N - k
elements from the right part whose sum is b
. These total N
elements have sum a + b
, and the complement N
elements have sum sum(A) - a - b
. Since we want to minimize abs(a + b - (sum(A) - a - b)) = abs(sum(A) - 2 * (a + b))
, for a given a
, the optimal b = (sum(A) - 2 * a) / 2
.
We can enumerate each possible a
of a left subset of size k
, and binary search the closest value to the optimal b
of a right subset of size N - k
.
// OJ: https://leetcode.com/problems/partition-array-into-two-arrays-to-minimize-sum-difference/
// Author: github.com/lzl124631x
// Time: O(2^N * N)
// Space: O(2^N)
class Solution {
public:
int minimumDifference(vector<int>& A) {
int N = A.size() / 2, sum = accumulate(begin(A), end(A), 0);
vector<vector<int>> left(N + 1), right(N + 1); // left[k] is an array of all sums of left subsets of size `k`.
for (int mask = 0; mask < 1 << N; ++mask) { // fill all the left and right sum arrays
int k = __builtin_popcount(mask), L = 0, R = 0;
for (int i = 0; i < N; ++i) {
if (mask >> i & 1) {
L += A[i];
R += A[i + N];
}
}
left[k].push_back(L);
right[k].push_back(R);
}
for (int k = 0; k <= N; ++k) sort(begin(right[k]), end(right[k])); // sort right[k] for binary search
int ans = min(abs(sum - 2 * left[N][0]), abs(sum - 2 * right[N][0])); // If we pick all N elements from first half or second half
for (int k = 1; k <= N; ++k) {
auto &v = right[N - k];
for (int a : left[k]) {
int b = (sum - 2 * a) / 2;
auto it = lower_bound(begin(v), end(v), b);
if (it != end(v)) ans = min(ans, abs(sum - 2 * (a + *it)));
if (it != begin(v)) ans = min(ans, abs(sum - 2 * (a + *prev(it))));
}
}
return ans;
}
};
Similar to 1755. Closest Subsequence Sum (Hard)