You are given an integer array nums
. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr]
is abs(numsl + numsl+1 + ... + numsr-1 + numsr)
.
Return the maximum absolute sum of any (possibly empty) subarray of nums
.
Note that abs(x)
is defined as follows:
- If
x
is a negative integer, thenabs(x) = -x
. - If
x
is a non-negative integer, thenabs(x) = x
.
Example 1:
Input: nums = [1,-3,2,3,-4] Output: 5 Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.
Example 2:
Input: nums = [2,-5,1,-4,3,-2] Output: 8 Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
Related Topics:
Greedy
Similar Questions:
// OJ: https://leetcode.com/problems/maximum-absolute-sum-of-any-subarray/
// Author: github.com/lzl124631x
// Time: O(N)
// Space: O(1)
class Solution {
public:
int maxAbsoluteSum(vector<int>& A) {
int ans = 0, mn = 0, mx = 0, sum = 0;
for (int n : A) {
sum += n;
ans = max({ ans, mx - sum, sum - mn });
mx = max(mx, sum);
mn = min(mn, sum);
}
return ans;
}
};