Skip to content

Latest commit

 

History

History

120

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Given a triangle array, return the minimum path sum from top to bottom.

For each step, you may move to an adjacent number of the row below. More formally, if you are on index i on the current row, you may move to either index i or index i + 1 on the next row.

 

Example 1:

Input: triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
Output: 11
Explanation: The triangle looks like:
   2
  3 4
 6 5 7
4 1 8 3
The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).

Example 2:

Input: triangle = [[-10]]
Output: -10

 

Constraints:

  • 1 <= triangle.length <= 200
  • triangle[0].length == 1
  • triangle[i].length == triangle[i - 1].length + 1
  • -104 <= triangle[i][j] <= 104

 

Follow up: Could you do this using only O(n) extra space, where n is the total number of rows in the triangle?

Related Topics:
Array, Dynamic Programming

Solution 1. DP

// OJ: https://leetcode.com/problems/triangle/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(1)
class Solution {
public:
    int minimumTotal(vector<vector<int>>& A) {
        for (int N = A.size(), i = N - 2; i >= 0; --i) {
            for (int j = 0; j <= i; ++j) {
                A[i][j] += min(A[i + 1][j], A[i + 1][j + 1]);
            }
        }
        return A[0][0];
    }
};