-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_cbow.py
454 lines (355 loc) · 20.5 KB
/
train_cbow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
"""
Main script for training a Word2Mat model.
"""
import os
import sys
import time
import argparse
import pickle
import random
import numpy as np
from random import shuffle
import torch
from torch.autograd import Variable
import torch.nn as nn
# CBOW data
from torch.utils.data import DataLoader
from cbow import CBOWNet, build_vocab, tokenize, CBOWDataset, recursive_file_list, get_index_batch
# Encoder
from mutils import get_optimizer, run_hyperparameter_optimization, write_to_csv
from word2mat import get_cbow_cmow_hybrid_encoder, get_cbow_encoder, get_cmow_encoder, get_acbow_encoder
from torch.utils.data.sampler import SubsetRandomSampler
from wrap_evaluation import run_and_evaluate, construct_model_name, _evaluate_downstream_and_probing_tasks, \
_get_score_for_name
from wrap_evaluation import construct_model_name
import time
from torch import optim
def run_experiment(params):
# print parameters passed, and all parameters
print('\ntogrep : {0}\n'.format(sys.argv[1:]))
print(params)
"""
SEED
"""
np.random.seed(5)
torch.manual_seed(5)
torch.cuda.manual_seed(5)
"""
DATA
"""
dataset_path = params.dataset_path
# build training and test corpus
filename_list = recursive_file_list(dataset_path)
print('Use the following files for training: ', filename_list)
corpus = CBOWDataset(dataset_path, params.num_docs, params.context_size,
params.num_samples_per_item, params.mode,
params.precomputed_word_vocab, params.max_words,
None, 1000, params.precomputed_chunks_dir, params.temp_path)
corpus_len = len(corpus)
## split train and test
inds = list(range(corpus_len))
shuffle(inds)
num_val_samples = int(corpus_len * params.validation_fraction)
train_indices = inds[:-num_val_samples] if num_val_samples > 0 else inds
test_indices = inds[-num_val_samples:] if num_val_samples > 0 else []
cbow_train_loader = DataLoader(corpus, sampler = SubsetRandomSampler(train_indices), batch_size=params.batch_size, shuffle=False, num_workers = params.num_workers, pin_memory = True, collate_fn = corpus.collate_fn)
cbow_test_loader = DataLoader(corpus, sampler = SubsetRandomSampler(test_indices), batch_size=params.batch_size, shuffle=False, num_workers = params.num_workers, pin_memory = True, collate_fn = corpus.collate_fn)
## extract some variables needed for training
num_training_samples = corpus.num_training_samples
word_vec = corpus.word_vec
unigram_dist = corpus.unigram_dist
word_vec_copy = corpus._word_vec_count_tuple
# build path where to store the encoder
outputmodelname = construct_model_name(params.outputmodelname, params)
pickle.dump(word_vec_copy, open( os.path.join(params.outputdir, outputmodelname + '.vocab'), "wb" ))
print("Number of sentences used for training:", str(num_training_samples))
"""
MODEL
"""
# build encoder
n_words = len(word_vec)
if params.w2m_type == "cmow":
encoder = get_cmow_encoder(n_words, padding_idx = 0,
word_emb_dim = params.word_emb_dim,
initialization_strategy = params.initialization)
output_embedding_size = params.word_emb_dim
elif params.w2m_type == "cbow":
encoder = get_cbow_encoder(n_words, padding_idx = 0, word_emb_dim = params.word_emb_dim)
output_embedding_size = params.word_emb_dim
elif params.w2m_type == "hybrid":
encoder = get_cbow_cmow_hybrid_encoder(n_words, padding_idx = 0,
word_emb_dim = params.word_emb_dim,
initialization_strategy = params.initialization)
output_embedding_size = 2 * params.word_emb_dim
elif params.w2m_type == "acbow":
encoder = get_acbow_encoder(n_words, padding_idx=0, word_emb_dim=params.word_emb_dim)
output_embedding_size = params.word_emb_dim
# build cbow model
cbow_net = CBOWNet(encoder, output_embedding_size, n_words,
weights = unigram_dist, n_negs = params.n_negs, padding_idx = 0)
if torch.cuda.device_count() > 1:
print("Using", torch.cuda.device_count(), "GPUs for training!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
cbow_net = nn.DataParallel(cbow_net, output_device=1)
use_multiple_gpus = True
else:
use_multiple_gpus = False
# optimizer
print([x.size() for x in cbow_net.parameters()])
optim_fn, optim_params = get_optimizer(params.optimizer)
optimizer = optim_fn(cbow_net.parameters(), **optim_params)
optimizer = optim.Adam([{'params': cbow_net.module.encoder.lookup_table.parameters(), 'lr': 0.0003},
{'params': cbow_net.module.encoder.key_table.parameters(), 'lr': 0.0003},
{'params': cbow_net.module.encoder.query_table.parameters(), 'lr': 0.0003}])
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
# cuda by default
cbow_net.cuda()
"""
TRAIN
"""
val_acc_best = -1e10
adam_stop = False
stop_training = False
lr = optim_params['lr'] if 'sgd' in params.optimizer else None
# compute learning rate schedule
if params.linear_decay:
lr_shrinkage = (lr - params.minlr) / ((float(num_training_samples) / params.batch_size) * params.n_epochs)
def forward_pass(X_batch, tgt_batch, params, check_size = False):
X_batch = Variable(X_batch).cuda()
tgt_batch = Variable(torch.LongTensor(tgt_batch)).cuda()
k = X_batch.size(0) # actual batch size
loss = cbow_net(X_batch, tgt_batch).mean()
return loss, k
def validate(data_loader):
cbow_net.eval()
with torch.no_grad():
all_costs = []
for X_batch, tgt_batch in data_loader:
loss, k = forward_pass(X_batch, tgt_batch, params)
all_costs.append(loss.item())
cbow_net.train()
return np.mean(all_costs)
def trainepoch(epoch):
print('\nTRAINING : Epoch ' + str(epoch))
cbow_net.train()
all_costs = []
logs = []
words_count = 0
last_time = time.time()
correct = 0.
if not params.linear_decay:
optimizer.param_groups[0]['lr'] = optimizer.param_groups[0]['lr'] * params.decay if epoch>1\
and 'sgd' in params.optimizer else optimizer.param_groups[0]['lr']
print('Learning rate : {0}'.format(optimizer.param_groups[0]['lr']))
if epoch > 1 and params.exp_decay:
scheduler.step((epoch - 1) * 2)
processed_training_samples = 0
start_time = time.time()
total_time = 0
total_batch_generation_time = 0
total_forward_time = 0
total_backward_time = 0
total_step_time = 0
last_processed_training_samples = 0
nonlocal processed_batches, stop_training, no_improvement, min_val_loss, losses, min_loss_criterion
count = 0
for i, (X_batch, tgt_batch) in enumerate(cbow_train_loader):
# count = count + 1
# if count < 50:
# cbow_net.encoder.key_table.weight.requires_grad = False
# cbow_net.encoder.query_table.weight.requires_grad = False
# cbow_net.encoder.lookup_table.weight.requires_grad = True
# cbow_net.outputembeddings.weight.requires_grad = True
# else:
# if count == 50:
# print("inside the black hole")
# cbow_net.encoder.key_table.weight.requires_grad = True
# cbow_net.encoder.query_table.weight.requires_grad = True
# cbow_net.encoder.lookup_table.weight.requires_grad = False
# cbow_net.outputembeddings.weight.requires_grad = False
# if count == 60:
# count = 0
batch_generation_time = (time.time() - start_time) * 1000000
# forward pass
forward_start = time.time()
loss, k = forward_pass(X_batch, tgt_batch, params)
all_costs.append(loss.item())
forward_total = (time.time() - forward_start) * 1000000
# backward
backward_start = time.time()
optimizer.zero_grad()
loss.backward()
backward_total = (time.time() - backward_start) * 1000000
# linear learning rate decay
if params.linear_decay:
optimizer.param_groups[0]['lr'] = optimizer.param_groups[0]['lr'] - lr_shrinkage if \
'sgd' in params.optimizer else optimizer.param_groups[0]['lr']
# optimizer step
step_time = time.time()
optimizer.step()
total_step_time += (time.time() - step_time) * 1000000
# log progress
processed_training_samples += params.batch_size
percentage_done = float(processed_training_samples) / num_training_samples
if params.exp_decay and percentage_done > 0.5:
scheduler.step(epoch * 2 - 1)
processed_batches += 1
if processed_batches == params.validation_frequency:
# compute validation loss and train loss
val_loss = round(validate(cbow_test_loader), 5) if num_val_samples > 0 else float('inf')
train_loss = round(np.mean(all_costs), 5)
# print current loss and processing speed
logs.append('Epoch {3} - {4:.4} ; lr {2:.4} ; kq_lr {6:.4}; train-loss {0} ; val-loss {5} ; sentence/s {1}'.format(train_loss, int((processed_training_samples - last_processed_training_samples) / (time.time() - last_time)), optimizer.param_groups[0]['lr'], epoch, percentage_done, val_loss, optimizer.param_groups[1]['lr']))
if params.VERBOSE:
print('\n\n\n')
print(logs[-1])
last_time = time.time()
words_count = 0
all_costs = []
last_processed_training_samples = processed_training_samples
if params.VERBOSE:
print("100 Batches took {} microseconds".format(total_time))
print("get_batch: {} \nforward: {} \nbackward: {} \nstep: {}".format(total_batch_generation_time / total_time, total_forward_time / total_time, total_backward_time / total_time, total_step_time / total_time))
total_time = 0
total_batch_generation_time = 0
total_forward_time = 0
total_backward_time = 0
total_step_time = 0
processed_batches = 0
# save losses for logging later
losses.append((train_loss, val_loss))
# early stopping?
if val_loss < min_val_loss:
min_val_loss = val_loss
# save best model
print('Validated: Saving Model')
torch.save(cbow_net, os.path.join(params.outputdir, outputmodelname + '_val.cbow_net'))
print('Validated: Saved Model')
if params.stop_criterion is not None:
stop_crit_loss = eval(params.stop_criterion)
if stop_crit_loss < min_loss_criterion:
no_improvement = 0
min_loss_criterion = stop_crit_loss
else:
no_improvement += 1
if no_improvement > params.patience:
stop_training = True
print("No improvement in loss criterion", str(params.stop_criterion),
"for", str(no_improvement), "steps. Terminate training.")
break
if processed_batches % 1000 == 0:
if params.downstream_eval:
downstream_scores = _evaluate_downstream_and_probing_tasks(encoder, params, batcher_cbow, prepare)
# from each downstream task, only select scores we care about
to_be_saved_scores = {}
for score_name in downstream_scores:
to_be_saved_scores[score_name] = _get_score_for_name(downstream_scores, score_name)
print(to_be_saved_scores)
#print("Dumping U.V")
#a = torch.matmul(cbow_net.module.encoder.lookup_table.weight, cbow_net.module.outputembeddings.weight.t()).cpu().detach().numpy()
#pickle.dump(a, open('foo.nda', 'wb'), protocol=4)
#print("Dumping complete")
if processed_batches % 4000 == 0:
print('Regular: Saving Model')
torch.save(cbow_net, os.path.join(params.outputdir, outputmodelname + '_regular.cbow_net'))
print('Regular: Saved Model')
now = time.time()
batch_time_micro = (now - start_time) * 1000000
total_time = total_time + batch_time_micro
total_batch_generation_time += batch_generation_time
total_forward_time += forward_total
total_backward_time += backward_total
start_time = now
print('Epoch: Saving Model')
torch.save(cbow_net, os.path.join(params.outputdir, outputmodelname + '_ep' + str(epoch) + '.cbow_net'))
print('Epoch: Saved Model')
"""
Train model on CBOW objective
"""
epoch = 1
processed_batches = 0
min_val_loss = float('inf')
min_loss_criterion = float('inf')
no_improvement = 0
losses = []
while not stop_training and epoch <= params.n_epochs:
trainepoch(epoch)
epoch += 1
# load the best model
if min_val_loss < float('inf'):
cbow_net = torch.load(os.path.join(params.outputdir, outputmodelname + '.cbow_net'))
print("Loading model with best validation loss.")
else:
# we use the current model;
print("No model with better validation loss has been saved.")
# save word vocabulary and counts
pickle.dump(word_vec_copy, open( os.path.join(params.outputdir, outputmodelname + '.vocab'), "wb" ))
if use_multiple_gpus:
cbow_net = cbow_net.module
return cbow_net.encoder, losses
def get_params_parser():
parser = argparse.ArgumentParser(description='Training a word2mat model.')
# paths
parser.add_argument('--precomputed_word_vocab', type=str, default=None, help= \
"Specify path where to load precomputed word.")
# training parameters
parser.add_argument("--n_epochs", type=int, default=2)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--optimizer", type=str, default="sgd,lr=0.3", help="adam or sgd,lr=0.1")
parser.add_argument("--decay", type=float, default=0.99, help="lr decay")
parser.add_argument("--linear_decay", action="store_true", help="If set, the learning rate is shrunk linearly after each batch as to approach minlr.")
parser.add_argument("--exp_decay", action="store_true", default=False)
parser.add_argument("--minlr", type=float, default=1e-5, help="minimum lr")
parser.add_argument("--validation_frequency", type=int, default=500, help="How many batches to process before evaluating on the validation set (500).")
parser.add_argument("--validation_fraction", type=float, default=0.0001, help="What fraction of the corpus to use for validation.\
Set to 0 to not use validation set based saving of intermediate models.")
parser.add_argument("--stop_criterion", type=str, default=None, help="Which loss to use as stopping criterion.", choices = ['val_loss', 'train_loss'])
parser.add_argument("--patience", type=int, default=3, help="How many validation steps to make before terminating training.")
parser.add_argument("--VERBOSE", action="store_true", default=False, help="Whether to print additional info on speed of processing.")
parser.add_argument("--num_workers", type=int, default=10, help="How many worker threads to use for creating the samples from the dataset.")
# Word2Mat specific
parser.add_argument("--w2m_type", type=str, default='cbow', choices=['acbow', 'cmow', 'cbow', 'hybrid'], help="Choose the encoder to use.")
parser.add_argument("--word_emb_dim", type=int, default=100, help="Dimensionality of word embeddings.")
parser.add_argument("--initialization", type=str, default='normal', help="Initialization strategy to use.", choices = ['one', 'identity', 'normalized', 'normal'])
# dataset and vocab
parser.add_argument("--max_words", type=int, default=50000, help="Only produce embeddings for the most common tokens.")
parser.add_argument("--dataset_path", type=str, default='/dataroot/attend-word2vec-data/medium_umbc_data/', required=False, help="Path to a directory containing all files to use for training. One sentence per line in a file is assumed.")
parser.add_argument("--num_docs", type=int, default=6722135, help="How many documents to consider from the source directory.")
parser.add_argument('--temp_path', type=str, required=False, default= '/dataroot/attend-word2vec-data/chunk_umbc_medium',help="Specify path where to save the chunkified input text.")
parser.add_argument('--precomputed_chunks_dir', type=str, help="Specify path from where to load the chunkified input text.")
#parser.add_argument("--max_words", type=int, default=100000, help="Only produce embeddings for the most common tokens.")
# parser.add_argument("--dataset_path", type=str, default='/dataroot/attend-word2vec-data/full_umbc_data/', required=False, help="Path to a directory containing all files to use for training. One sentence per line in a file is assumed.")
# parser.add_argument("--num_docs", type=int, default=134442680, help="How many documents to consider from the source directory.")
# parser.add_argument('--temp_path', type=str, required=False, default= '/dataroot/attend-word2vec-data/chunk_umbc_full',help= "Specify path where to save the chunkified input text.")
# parser.add_argument('--precomputed_chunks_dir', type=str, default='/dataroot/attend-word2vec-data/chunk_umbc_full', help= "Specify path from where to load the chunkified input text.")
# CBOW specific
parser.add_argument("--context_size", type=int, default=5, help="Context window size for CBOW.")
parser.add_argument("--num_samples_per_item", type=int, default=1, help="Specify number of samples to generate from each sentence (the higher, the faster training).")
parser.add_argument("--mode", type=str, help="Determines the mode of the prediction task, i.e., which word is to be removed from a given window of words. Options are 'cbow' (remove middle word) and 'random' (a random word from the window is removed).", default='random', choices = ['cbow', 'random'])
parser.add_argument("--n_negs", type=int, default=5, help="How many negative samples to use for training (the larger the dataset, the fewer are required (5).")
parser.add_argument("--outputmodelname", type=str, nargs = "+", default=["mymodel"], help="If one argument is passed, the model is saved at the respective location. If multiple arguments are passed, these are interpreted of names of parameters from which the modelname is automatically constructed in a <key:value> fashion.")
parser.add_argument("--outputdir", type=str, default='/dataroot/attend-word2vec-data/saved_full_umbc_models/', help="Output directory", required = False)
return parser
def prepare(params_senteval, samples):
params = params_senteval["cmd_params"]
outputmodelname = construct_model_name(params.outputmodelname, params)
# Load vocabulary
vocabulary = pickle.load(open(os.path.join(params.outputdir, outputmodelname + '.vocab'), "rb" ))[0]
params_senteval['vocabulary'] = vocabulary
params_senteval['inverse_vocab'] = {vocabulary[w] : w for w in vocabulary}
def _batcher_helper(params, batch):
sent, _ = get_index_batch(batch, params.vocabulary)
sent_cuda = Variable(sent.cuda())
sent_cuda = sent_cuda.t()
params.word2mat.eval() # Deactivate drop-out and such
embeddings = params.word2mat.forward(sent_cuda).data.cpu().numpy()
return embeddings
def batcher_cbow(params_senteval, batch):
params = params_senteval["cmd_params"]
embeddings = _batcher_helper(params_senteval, batch)
return embeddings
if __name__ == "__main__":
run_and_evaluate(run_experiment, get_params_parser, batcher_cbow, prepare)
# parser = get_params_parser()
# params = parser.parse_args()
# encoder, losses = run_experiment(params)