Skip to content

Files

Latest commit

 

History

History

examples

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Examples

This directory contains example programs demonstrating Ludwig's Python APIs.

Directory Examples Provided
hyperopt Demonstrates Ludwig's to hyper-parameter optimization capability.
kfold_cv Provides two examples for performing a k-fold cross validation analysis. One example uses the ludwig experiment cli. The other example uses the ludwig.experiment.kfold_cross_validate() api function.
mnist Creates a model config data structure from a yaml file and trains a model. Programmatically modify the model config data structure to evaluate several different neural network architectures. Jupyter notebook demonstrates using a hold-out test data set to visualize model performance for alternative model architectures.
titanic Trains a simple model with model config contained in a yaml file. Trains multiple models from yaml files and generate visualizations to compare training results. Jupyter notebook demonstrating how to programmatically create visualizations.
serve Demonstrates running Ludwig http model server. A sample Python program illustrates how to invoke the REST API to get predictions from input features.
class_imbalance Demonstrates using our class balancing feature to over-sample an imbalanced dataset.