-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
586 lines (483 loc) · 23.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import os.path
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import time
import pickle
import torch
import torch.nn as nn
# import torch.optim as optim
import torch.utils.data
from torch.utils.data import TensorDataset
import my_matplotlib_style as ms
from fastai import basic_data, basic_train
from fastai import train as tr
from nn_utils import get_data
# Functions for evaluation
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def time_encode_decode(model, dataframe, verbose=False):
"""Time the model's endoce and decode functions.
Parameters
----------
model : torch.nn.Module
The model to evaluate.
dataframe : type
A pandas DataFrame containing data to encode and decode.
Returns
-------
tuple
Tuple containing (encode_time_per_jet, decode_time_per_jet).
"""
data = torch.tensor(dataframe.values, dtype=torch.float)
start_encode = time.time()
latent = model.encode(data)
end_encode = time.time()
encode_time = end_encode - start_encode
start_decode = time.time()
_ = model.decode(latent)
end_decode = time.time()
decode_time = end_decode - start_decode
n_jets = len(dataframe)
decode_time_per_jet = decode_time / n_jets
encode_time_per_jet = encode_time / n_jets
if verbose:
print('Encode time/jet: %e seconds' % encode_time_per_jet)
print('Decode time/jet: %e seconds' % decode_time_per_jet)
return encode_time_per_jet, decode_time_per_jet
def rms(arr):
arr = arr.flatten()
arr[arr == np.nan] = 1
return np.sqrt(np.sum(arr**2) / len(arr))
def nanrms(x, axis=None):
return np.sqrt(np.nanmean(x**2, axis=axis))
def std_error(x, axis=None, ddof=0):
return np.nanstd(x, axis=axis, ddof=ddof) / np.sqrt(2 * len(x))
def loss_batch(model, loss_func, xb, yb, opt=None):
loss = loss_func(model(xb), yb)
if opt is not None:
loss.backward()
opt.step()
opt.zero_grad()
return loss.item(), len(xb)
def validate(model, dl, loss_func):
for batch in dl:
losses, nums = zip(*[loss_batch(model, loss_func, xb, yb) for xb, yb in dl])
val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)
print(val_loss)
return val_loss
# Functions for data retreival
def get_orig_unnormed_data(path=None):
if path is None:
train = pd.read_pickle('../../processed_data/train.pkl')
test = pd.read_pickle('../../processed_data/test.pkl')
else:
train = pd.read_pickle(path)
test = pd.read_pickle(path)
return train, test
def get_sub_data(ii):
path_to_data = '../../../data/split_data/'
train = pd.read_pickle(path_to_data + 'sub_train_%d' % ii)
test = pd.read_pickle(path_to_data + 'sub_test_%d' % ii)
return train, test
def db_from_df(train, test, bs=1024):
# Create TensorDatasets
train_ds = TensorDataset(torch.tensor(train.values), torch.tensor(train.values))
valid_ds = TensorDataset(torch.tensor(test.values), torch.tensor(test.values))
# Create DataLoaders
train_dl, valid_dl = get_data(train_ds, valid_ds, bs=bs)
# Return DataBunch
return basic_data.DataBunch(train_dl, valid_dl)
# Functions for data normalization and reconstruction
def normalized_reconstructions(model, unnormed_df, force_mean=None, force_std=None, idxs=None):
if force_mean is None:
mean = unnormed_df.mean()
std = unnormed_df.std()
else:
mean = force_mean
std = force_std
# Normalize
normed_df = (unnormed_df - mean) / std
if idxs is not None:
data = torch.tensor(normed_df[idxs[0]:idxs[1]].values)
unnormed_df = torch.tensor(unnormed_df[idxs[0]:idxs[1]].values)
else:
data = torch.tensor(normed_df.values)
unnormed_df = torch.tensor(unnormed_df.values)
pred = model(data).detach()
return pred, data
def unnormalized_reconstructions(model, unnormed_df, force_mean=None, force_std=None, idxs=None):
if force_mean is None:
mean = unnormed_df.mean()
std = unnormed_df.std()
else:
mean = force_mean
std = force_std
# Normalize
normed_df = (unnormed_df - mean) / std
if idxs is not None:
data = torch.tensor(normed_df[idxs[0]:idxs[1]].values)
unnormed_df = torch.tensor(unnormed_df[idxs[0]:idxs[1]].values)
else:
data = torch.tensor(normed_df.values)
unnormed_df = torch.tensor(unnormed_df.values)
pred = model(data).detach().numpy()
pred = np.multiply(pred, std.values)
pred = np.add(pred, mean.values)
pred = torch.tensor(pred)
#data = np.multiply(data, std.values)
#data = np.add(data, mean.values)
return pred, unnormed_df
def normalize(train, test, force_mean=None, force_std=None):
# Normalize
if force_mean is not None:
train_mean = force_mean
train_std = force_std
else:
train_mean = train.mean()
train_std = train.std()
train = (train - train_mean) / train_std
test = (test - train_mean) / train_std
return train, test
def log_normalize(train, test=None):
train['pT'] = train['pT'].apply(lambda x: np.log10(x) / 3.)
train['E'] = train['E'].apply(lambda x: np.log10(x) / 3.)
train['eta'] = train['eta'] / 3.
train['phi'] = train['phi'] / 3.
if test is not None:
test['pT'] = test['pT'].apply(lambda x: np.log10(x) / 3.)
test['E'] = test['E'].apply(lambda x: np.log10(x) / 3.)
test['eta'] = test['eta'] / 3.
test['phi'] = test['phi'] / 3.
return train.astype('float32'), test.astype('float32')
else:
return train.astype('float32')
def get_log_normalized_dls(train, test, bs=1024):
"""Get lognormalized DataLoaders from train and test DataFrames.
Parameters
----------
train : DataFrame
Training data.
test : DataFrame
Test data.
bs : int
Batch size.
Returns
-------
(DataLoader, DataLoader)
Train and test DataLoaders.
"""
train, test = log_normalize(train, test)
train_x = train
test_x = test
train_y = train_x # y = x since we are building and AE
test_y = test_x
train_ds = TensorDataset(torch.tensor(train_x.values, dtype=torch.float), torch.tensor(train_y.values, dtype=torch.float))
valid_ds = TensorDataset(torch.tensor(test_x.values, dtype=torch.float), torch.tensor(test_y.values, dtype=torch.float))
train_dl, valid_dl = get_data(train_ds, valid_ds, bs)
return train_dl, valid_dl
def logunnormalized_reconstructions(model, unnormed_df, idxs=None):
normed_df = log_normalize(unnormed_df.copy())
if idxs is not None:
data = torch.tensor(normed_df[idxs[0]:idxs[1]].values)
unnormed_df = torch.tensor(unnormed_df[idxs[0]:idxs[1]].values)
else:
data = torch.tensor(normed_df.values)
unnormed_df = torch.tensor(unnormed_df.values)
pred = model(data)
pred = pred * 3
pred[:, 0] = 10**(pred[:, 0])
pred[:, 3] = 10**(pred[:, 3])
return pred
# Plotting functions
def plot_residuals(pred, data, range=None, variable_names=['pT', 'eta', 'phi', 'E'], bins=1000, save=None, title=None):
alph = 0.8
residuals = (pred.numpy() - data.numpy()) / data.numpy()
for kk in np.arange(4):
plt.figure()
n_hist_pred, bin_edges, _ = plt.hist(residuals[:, kk], label='Residuals', alpha=alph, bins=bins, range=range)
if title is None:
plt.suptitle('Residuals of %s' % variable_names[kk])
else:
plt.suptitle(title)
plt.xlabel(r'$(%s_{recon} - %s_{true}) / %s_{true}$' % (variable_names[kk], variable_names[kk], variable_names[kk]))
plt.ylabel('Number of events')
ms.sciy()
if save is not None:
plt.savefig(save + '_%s' % variable_names[kk])
def plot_histograms(pred, data, bins, same_bin_edges=True, colors=['orange', 'c'], variable_list=[r'$p_T$', r'$\eta$', r'$\phi$', r'$E$'], variable_names=['pT', 'eta', 'phi', 'E'], unit_list=['[GeV]', '[rad]', '[rad]', '[GeV]'], title=None):
alph = 0.8
n_bins = bins
for kk in np.arange(4):
plt.figure()
n_hist_data, bin_edges, _ = plt.hist(data[:, kk], color=colors[1], label='Input', alpha=1, bins=n_bins)
if same_bin_edges:
n_bins_2 = bin_edges
else:
n_bins_2 = bins
n_hist_pred, _, _ = plt.hist(pred[:, kk], color=colors[0], label='Output', alpha=alph, bins=n_bins_2)
if title is None:
plt.suptitle(variable_names[kk])
else:
plt.suptitle(title)
plt.xlabel(variable_list[kk] + ' ' + unit_list[kk])
plt.ylabel('Number of events')
ms.sciy()
plt.legend()
def plot_activations(learn, figsize=(12, 9), lines=['-', ':'], save=None, linewd=1, fontsz=14):
plt.figure(figsize=figsize)
for i in range(learn.activation_stats.stats.shape[1]):
thiscol = ms.colorprog(i, learn.activation_stats.stats.shape[1])
plt.plot(learn.activation_stats.stats[0][i], linewidth=linewd, color=thiscol, label=str(learn.activation_stats.modules[i]).split(',')[0], linestyle=lines[i % len(lines)])
plt.title('Weight means')
plt.legend(fontsize=fontsz)
plt.xlabel('Mini-batch')
if save is not None:
plt.savefig(save + '_means')
plt.figure(figsize=(12, 9))
for i in range(learn.activation_stats.stats.shape[1]):
thiscol = ms.colorprog(i, learn.activation_stats.stats.shape[1])
plt.plot(learn.activation_stats.stats[1][i], linewidth=linewd, color=thiscol, label=str(learn.activation_stats.modules[i]).split(',')[0], linestyle=lines[i % len(lines)])
plt.title('Weight standard deviations')
plt.xlabel('Mini-batch')
plt.legend(fontsize=fontsz)
if save is not None:
plt.savefig(save + '_stds')
# Miscellaneous
def replaceline_and_save(fname, findln, newline, override=False):
if findln not in newline and not override:
raise ValueError('Detected inconsistency!!!!')
with open(fname, 'r') as fid:
lines = fid.readlines()
found = False
pos = None
for ii, line in enumerate(lines):
if findln in line:
pos = ii
found = True
break
if not found:
raise ValueError('Not found!!!!')
if '\n' in newline:
lines[pos] = newline
else:
lines[pos] = newline + '\n'
with open(fname, 'w') as fid:
fid.writelines(lines)
# Custom normalization for AOD data
eta_div = 5
emfrac_div = 1.6
negE_div = 1.6
phi_div = 3
m_div = 1.8
width_div = .6
N90_div = 20
timing_div = 40
hecq_div = 1
centerlambda_div = 2
secondlambda_div = 1
secondR_div = .6
larqf_div = 2.5
pt_div = 1.2
centroidR_div = 0.8
area4vecm_div = 0.18
area4vecpt_div = 0.7
area4vec_div = 0.8
Oot_div = 0.3
larq_div = 0.6
log_add = 100
log_sub = 2
m_add = 1
centroidR_sub = 3
pt_sub = 1.3
area4vecm_sub = 0.15
def filter_jets(train):
train['pt'] = train['pt'] / 1000. # Convert to GeV
train['m'] = train['m'] / 1000. # Convert to GeV
train['LeadingClusterPt'] = train['LeadingClusterPt'] / 1000. # Convert to GeV
train['LeadingClusterSecondR'] = train['LeadingClusterSecondR'] / 1000. # Convert to GeV
train['LeadingClusterSecondLambda'] = train['LeadingClusterSecondLambda'] / 1000. # Convert to GeV
train['NegativeE'] = train['NegativeE'] / 1000. # Convert to GeV
if 'JetGhostArea' in train.keys():
train.pop('JetGhostArea')
if 'BchCorrCell' in train.keys():
train.pop('BchCorrCell')
# Remove all jets with EMFrac outside (-2, 2)
train = train[(np.abs(train['EMFrac']) < 5)]
train = train[np.invert((np.abs(train['EMFrac']) < 0.05) & (np.abs(train['eta']) >= 2))]
train = train[np.invert((train['AverageLArQF'] > .8) & (train['EMFrac'] > .95) & (train['LArQuality'] > .8) & (np.abs(train['eta']) < 2.8))]
train = train[np.abs(train['NegativeE']) < 60 * 5]
# Filter out extreme jets
train = train[np.invert((train['AverageLArQF'] > .8) & (np.abs(train['HECQuality']) > 0.5) & (np.abs(train['HECFrac']) > 0.5))]
train = train[train['OotFracClusters10'] > -0.1]
train = train[train['OotFracClusters5'] > -0.1]
if 'Width' in train.keys():
train = train[np.abs(train['Width']) < 5]
train = train[np.invert(train['Width'] == -1)]
if 'WidthPhi' in train.keys():
train = train[np.abs(train['WidthPhi']) < 5]
train = train[np.abs(train['Timing']) < 125]
train = train[train['LArQuality'] < 4]
train = train[np.abs(train['HECQuality']) < 2.5]
# train = train[train['m'] > 1e-3]
return train
def unit_convert_jets(leading, subleading):
leading_orig = leading.copy()
leading['pt'] = leading['pt'] / 1000. # Convert to GeV
subleading['pt'] = subleading['pt'] / 1000. # Convert to GeV
leading_orig['pt'] = leading_orig['pt'] / 1000. # Convert to GeV
leading['m'] = leading['m'] / 1000. # Convert to GeV
subleading['m'] = subleading['m'] / 1000. # Convert to GeV
leading_orig['m'] = leading_orig['m'] / 1000. # Convert to GeV
leading['LeadingClusterPt'] = leading['LeadingClusterPt'] / 1000. # Convert to GeV
subleading['LeadingClusterPt'] = subleading['LeadingClusterPt'] / 1000. # Convert to GeV
leading_orig['LeadingClusterPt'] = leading_orig['LeadingClusterPt'] / 1000. # Convert to GeV
leading['LeadingClusterSecondR'] = leading['LeadingClusterSecondR'] / 1000. # Convert to GeV
subleading['LeadingClusterSecondR'] = subleading['LeadingClusterSecondR'] / 1000. # Convert to GeV
leading_orig['LeadingClusterSecondR'] = leading_orig['LeadingClusterSecondR'] / 1000. # Convert to GeV
leading['LeadingClusterSecondLambda'] = leading['LeadingClusterSecondLambda'] / 1000. # Convert to GeV
subleading['LeadingClusterSecondLambda'] = subleading['LeadingClusterSecondLambda'] / 1000. # Convert to GeV
leading_orig['LeadingClusterSecondLambda'] = leading_orig['LeadingClusterSecondLambda'] / 1000. # Convert to GeV
leading['NegativeE'] = leading['NegativeE'] / 1000. # Convert to GeV
subleading['NegativeE'] = subleading['NegativeE'] / 1000. # Convert to GeV
leading_orig['NegativeE'] = leading_orig['NegativeE'] / 1000. # Convert to GeV
def filter_mc_jets(leading, subleading):
leading_orig = leading.copy()
leading_orig['pt'] = leading_orig['pt'] / 1000. # Convert to GeV
leading_orig['m'] = leading_orig['m'] / 1000. # Convert to GeV
leading_orig['LeadingClusterPt'] = leading_orig['LeadingClusterPt'] / 1000. # Convert to GeV
leading_orig['LeadingClusterSecondR'] = leading_orig['LeadingClusterSecondR'] / 1000. # Convert to GeV
leading_orig['LeadingClusterSecondLambda'] = leading_orig['LeadingClusterSecondLambda'] / 1000. # Convert to GeV
leading_orig['NegativeE'] = leading_orig['NegativeE'] / 1000. # Convert to GeV
if 'JetGhostArea' in leading.keys():
leading.pop('JetGhostArea')
subleading.pop('JetGhostArea')
leading_orig.pop('JetGhostArea')
if 'BchCorrCell' in leading.keys():
leading.pop('BchCorrCell')
subleading.pop('BchCorrCell')
leading_orig.pop('BchCorrCell')
# Remove all jets with EMFrac outside (-2, 2)
leading = leading[(np.abs(leading_orig['EMFrac']) < 2)]
subleading = subleading[(np.abs(leading_orig['EMFrac']) < 2)]
leading_orig = leading_orig[(np.abs(leading_orig['EMFrac']) < 2)]
leading = leading[np.invert((np.abs(leading_orig['EMFrac']) < 0.05) & (np.abs(leading_orig['eta']) >= 2))]
subleading = subleading[np.invert((np.abs(leading_orig['EMFrac']) < 0.05) & (np.abs(leading_orig['eta']) >= 2))]
leading_orig = leading_orig[np.invert((np.abs(leading_orig['EMFrac']) < 0.05) & (np.abs(leading_orig['eta']) >= 2))]
leading = leading[np.invert((leading_orig['AverageLArQF'] > .8) & (leading_orig['EMFrac'] > .95) & (leading_orig['LArQuality'] > .8) & (np.abs(leading_orig['eta']) < 2.8))]
subleading = subleading[np.invert((leading_orig['AverageLArQF'] > .8) & (leading_orig['EMFrac'] > .95) & (leading_orig['LArQuality'] > .8) & (np.abs(leading_orig['eta']) < 2.8))]
leading_orig = leading_orig[np.invert((leading_orig['AverageLArQF'] > .8) & (leading_orig['EMFrac'] > .95) & (leading_orig['LArQuality'] > .8) & (np.abs(leading_orig['eta']) < 2.8))]
leading = leading[np.abs(leading_orig['NegativeE']) < 60]
subleading = subleading[np.abs(leading_orig['NegativeE']) < 60]
leading_orig = leading_orig[np.abs(leading_orig['NegativeE']) < 60]
# Filter out extreme jets
leading = leading[np.invert((leading_orig['AverageLArQF'] > .8) & (np.abs(leading_orig['HECQuality']) > 0.5) & (np.abs(leading_orig['HECFrac']) > 0.5))]
subleading = subleading[np.invert((leading_orig['AverageLArQF'] > .8) & (np.abs(leading_orig['HECQuality']) > 0.5) & (np.abs(leading_orig['HECFrac']) > 0.5))]
leading_orig = leading_orig[np.invert((leading_orig['AverageLArQF'] > .8) & (np.abs(leading_orig['HECQuality']) > 0.5) & (np.abs(leading_orig['HECFrac']) > 0.5))]
leading = leading[leading_orig['OotFracClusters10'] > -0.1]
subleading = subleading[leading_orig['OotFracClusters10'] > -0.1]
leading_orig = leading_orig[leading_orig['OotFracClusters10'] > -0.1]
leading = leading[leading_orig['OotFracClusters5'] > -0.1]
subleading = subleading[leading_orig['OotFracClusters5'] > -0.1]
leading_orig = leading_orig[leading_orig['OotFracClusters5'] > -0.1]
if 'Width' in leading.keys():
leading = leading[leading_orig['Width'] < 100]
subleading = subleading[leading_orig['Width'] < 100]
leading_orig = leading_orig[leading_orig['Width'] < 100]
if 'WidthPhi' in leading.keys():
leading = leading[leading_orig['WidthPhi'] < 100]
subleading = subleading[leading_orig['WidthPhi'] < 100]
leading_orig = leading_orig[leading_orig['WidthPhi'] < 100]
leading = leading[np.abs(leading_orig['Timing']) < 120]
subleading = subleading[np.abs(leading_orig['Timing']) < 120]
leading_orig = leading_orig[np.abs(leading_orig['Timing']) < 120]
leading = leading[leading_orig['LArQuality'] < 2]
subleading = subleading[leading_orig['LArQuality'] < 2]
leading_orig = leading_orig[leading_orig['LArQuality'] < 2]
leading = leading[leading['HECQuality'] > -100000]
subleading = subleading[leading_orig['HECQuality'] > -100000]
leading_orig = leading_orig[leading['HECQuality'] > -100000]
leading = leading[leading_orig['m'] > 1e-3]
subleading = subleading[leading_orig['m'] > 1e-3]
leading_orig = leading_orig[leading_orig['m'] > 1e-3]
return leading, subleading
def custom_normalization(train, test):
train_cp = train.copy()
test_cp = test.copy()
for data in [train_cp, test_cp]:
data['DetectorEta'] = data['DetectorEta'] / eta_div
data['ActiveArea4vec_eta'] = data['ActiveArea4vec_eta'] / eta_div
data['EMFrac'] = data['EMFrac'] / emfrac_div
data['NegativeE'] = np.log10(-data['NegativeE'] + 1) / negE_div
data['eta'] = data['eta'] / eta_div
data['phi'] = data['phi'] / phi_div
data['ActiveArea4vec_phi'] = data['ActiveArea4vec_phi'] / phi_div
if 'Width' in data.keys():
data['Width'] = data['Width'] / width_div
else:
print('Wdith not found when normalizing')
if 'WidthPhi' in data.keys():
data['WidthPhi'] = data['WidthPhi'] / width_div
else:
print('WdithPhi not found when normalizing')
data['N90Constituents'] = data['N90Constituents'] / N90_div
data['Timing'] = data['Timing'] / timing_div
data['HECQuality'] = data['HECQuality'] / hecq_div
data['ActiveArea'] = data['ActiveArea'] / area4vec_div
data['ActiveArea4vec_m'] = data['ActiveArea4vec_m'] / area4vecm_div - area4vecm_sub
data['ActiveArea4vec_pt'] = data['ActiveArea4vec_pt'] / area4vecpt_div
data['LArQuality'] = data['LArQuality'] / larq_div
data['m'] = np.log10(data['m'] + m_add) / m_div
data['LeadingClusterCenterLambda'] = (np.log10(data['LeadingClusterCenterLambda'] + log_add) - log_sub) / centerlambda_div
data['LeadingClusterSecondLambda'] = (np.log10(data['LeadingClusterSecondLambda'] + log_add) - log_sub) / secondlambda_div
data['LeadingClusterSecondR'] = (np.log10(data['LeadingClusterSecondR'] + log_add) - log_sub) / secondR_div
data['AverageLArQF'] = (np.log10(data['AverageLArQF'] + log_add) - log_sub) / larqf_div
data['pt'] = (np.log10(data['pt']) - pt_sub) / pt_div
data['LeadingClusterPt'] = np.log10(data['LeadingClusterPt']) / pt_div
data['CentroidR'] = (np.log10(data['CentroidR']) - centroidR_sub) / centroidR_div
data['OotFracClusters10'] = np.log10(data['OotFracClusters10'] + 1) / Oot_div
data['OotFracClusters5'] = np.log10(data['OotFracClusters5'] + 1) / Oot_div
return train_cp, test_cp
def custom_unnormalize(normalized_data):
data = normalized_data.copy()
data['DetectorEta'] = data['DetectorEta'] * eta_div
data['ActiveArea4vec_eta'] = data['ActiveArea4vec_eta'] * eta_div
data['EMFrac'] = data['EMFrac'] * emfrac_div
data['eta'] = data['eta'] * eta_div
data['phi'] = data['phi'] * phi_div
data['ActiveArea4vec_phi'] = data['ActiveArea4vec_phi'] * phi_div
if 'Width' in data.keys():
data['Width'] = data['Width'] * width_div
else:
print('Width not found when unnormalizing')
if 'WidthPhi' in data.keys():
data['WidthPhi'] = data['WidthPhi'] * width_div
else:
print('WidthPhi not found when unnormalizing')
data['N90Constituents'] = data['N90Constituents'] * N90_div
data['Timing'] = data['Timing'] * timing_div
data['HECQuality'] = data['HECQuality'] * hecq_div
data['ActiveArea'] = data['ActiveArea'] * area4vec_div
data['ActiveArea4vec_m'] = (data['ActiveArea4vec_m'] + area4vecm_sub) * area4vecm_div
data['ActiveArea4vec_pt'] = data['ActiveArea4vec_pt'] * area4vecpt_div
data['LArQuality'] = data['LArQuality'] * larq_div
data['NegativeE'] = 1 - np.power(10, negE_div * data['NegativeE'])
data['m'] = np.power(10, m_div * data['m']) - m_add
data['LeadingClusterCenterLambda'] = np.power(10, centerlambda_div * data['LeadingClusterCenterLambda'] + log_sub) - log_add
data['LeadingClusterSecondLambda'] = np.power(10, secondlambda_div * data['LeadingClusterSecondLambda'] + log_sub) - log_add
data['LeadingClusterSecondR'] = np.power(10, secondR_div * data['LeadingClusterSecondR'] + log_sub) - log_add
data['AverageLArQF'] = np.power(10, larqf_div * data['AverageLArQF'] + log_sub) - log_add
data['pt'] = np.power(10, pt_div * data['pt'] + pt_sub)
data['LeadingClusterPt'] = np.power(10, pt_div * data['LeadingClusterPt'])
data['CentroidR'] = np.power(10, centroidR_div * data['CentroidR'] + centroidR_sub)
data['OotFracClusters10'] = np.power(10, Oot_div * data['OotFracClusters10']) - 1
data['OotFracClusters5'] = np.power(10, Oot_div * data['OotFracClusters5']) - 1
return data
def round_to_input(pred, uniques, variable):
var = pred[variable].values.reshape(-1, 1)
diff = (var - uniques)
ind = np.apply_along_axis(lambda x: np.argmin(np.abs(x)), axis=1, arr=diff)
new_arr = -np.ones_like(var)
for ii in np.arange(new_arr.shape[0]):
new_arr[ii] = uniques[ind[ii]]
pred[variable] = new_arr