-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmztabm.py
323 lines (275 loc) · 15.3 KB
/
mztabm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
from collections import OrderedDict
from editor.ols_lookup import OLSLookup
from natsort import natsorted
import pandas as pd
from pandas import isnull
from pygoslin.parser.Parser import LipidParser
from numpy import mean, std
# mztabm class for mzTab-M files
# supports creation of the metadata and summary table sections
# create a python class for mzTab-M files
class MzTabM:
staticCvTerms = {}
ontologies = {}
"""Class to create mzTab-M files from a config.json file and additional csv tables for mztab-head.csv, contacts.csv, databases.csv, instruments.csv, publications.csv, softwares.csv and id_and_quant.csv."""
def __init__(self, config, mztab_head, contacts, databases, instruments, publications, softwares, id_and_quant):
self.config = config
self.mztab_head = mztab_head
self.contacts = contacts
self.databases = databases
self.instruments = instruments
self.publications = publications
self.softwares = softwares
self.id_and_quant = id_and_quant
self.ols_lookup = OLSLookup(self.config["ontologies"], self.config["static_cv_terms"])
def write_mztabm(self, input_file, input_file_sheet, firstLipidColumnIndex, output_file):
print("Writing mzTab file to", output_file, "from", input_file, "sheet", input_file_sheet, "...")
df = pd.read_excel(input_file, input_file_sheet, index_col = "Sample")
df = df.reindex(index=natsorted(df.index))
df.insert(0, 'Sample', df.index)
studyVariables = df["StudyVariable"].unique()
samples = df["Sample"]
sampleSpecies = {}
if "Species" in df.columns:
sampleSpecies = df["Species"].map(lambda x: x.split("|"))
sampleTissues = {}
if "Tissue" in df.columns:
sampleTissues = df["Tissue"].map(lambda x: x.split("|"))
sampleDiseases = {}
if "Disease" in df.columns:
sampleDiseases = df["Disease"].map(lambda x: x.split("|"))
sampleCellTypes = {}
if "CellType" in df.columns:
sampleCellTypes = df["CellType"].map(lambda x: x.split("|"))
sampleGender = {}
if "Gender" in df.columns:
sampleGender = df["Gender"].map(lambda x: x.split("|"))
sample_to_sample_pos = {}
assay_to_msrun_pos = {}
sample_to_assay_pos = {}
mztabHead = pd.read_csv(self.mztab_head, sep=",")
mtdHead = self.create_mtd_head(mztabHead)
self.create_id_and_quant(mtdHead)
self.create_publications(mtdHead)
self.create_contacts(mtdHead)
self.create_ontologies(mtdHead)
self.create_samples(samples, sampleSpecies, sampleTissues, sampleDiseases, sampleCellTypes, sampleGender, mtdHead, sample_to_sample_pos)
self.create_ms_runs(samples, mtdHead, assay_to_msrun_pos)
self.create_assays(samples, mtdHead, assay_to_msrun_pos, sample_to_assay_pos)
self.create_study_variables(df, studyVariables, mtdHead, sample_to_assay_pos)
self.create_instruments(mtdHead)
self.create_softwares(mtdHead)
self.create_databases(mtdHead)
lipids = [col for i, col in enumerate(df) if i >= firstLipidColumnIndex]
lipid_parser = LipidParser()
with open(output_file, "wt") as mz:
mz.writelines(f'{s}\n' for s in mtdHead)
smlColums = [
"SMH",
"SML_ID",
"SMF_ID_REFS",
"chemical_name",
"database_identifier",
"chemical_formula",
"smiles",
"inchi",
"uri",
"theoretical_neutral_mass",
"adduct_ions",
"reliability",
"best_id_confidence_measure",
"best_id_confidence_value"
]
smlColums.extend(["abundance_assay[%i]" % i for i in range(1, len(samples) + 1)])
for j, studyVariableValue in enumerate(studyVariables):
j += 1
smlColums.extend(["abundance_study_variable[%i]" % j, "abundance_variation_study_variable[%i]" % j])
mz.write("\t".join(smlColums)+"\n")
for i, lipid_name in enumerate(lipids):
i += 1
goslin_lipid_name = lipid_name
normalized_lipid_name = lipid_name
theoretical_neutral_mass = "null"
concentrations = "\t".join([str(val) for val in df[lipid_name]])
concentrations = concentrations.replace("nan", "null")
# print(lipid_name, concentrations)
sv_assay_values = []
for j, studyVariableValue in enumerate(studyVariables):
j += 1
sampleIds = df[df["StudyVariable"]==studyVariableValue]["Sample"]
sv_mean = str(mean(df.loc[sampleIds, lipid_name])).replace("nan", "null")
sv_std = str(std(df.loc[sampleIds, lipid_name])).replace("nan", "null")
sv_assay_values.extend([sv_mean, sv_std])
sv_assay_values_str = "\t".join(sv_assay_values)
try:
lipid = lipid_parser.parse(lipid_name)
normalized_lipid_name = lipid.get_lipid_string()
goslin_lipid_name = f"goslin:{normalized_lipid_name}"
theoretical_neutral_mass = f"{round(lipid.get_mass(),4):.4f}"
except:
pass
mz.write("SML %i null %s %s null null null null %s null 3 [MS,MS:1002890,fragmentation score,] 1.0 %s %s\n" % (i, normalized_lipid_name, goslin_lipid_name, theoretical_neutral_mass, concentrations, sv_assay_values_str))
def create_databases(self, mtdHead):
databases = pd.read_csv(self.databases, sep=",", index_col="id")
databaseRows = []
for i, database in databases.iterrows():
item = f"database[{i}]"
value = ""
if "cv_term" in database and not isnull(database["cv_term"]):
dbTerm = self.ols_lookup.resolve_term(database['cv_term'], value)
if dbTerm != None:
databaseRows.append(f"MTD\t{item}\t{dbTerm}")
else:
databaseRows.append(f"MTD\t{item}\t{database['cv_term']}")
elif "name" in database and not isnull(database["name"]):
databaseRows.append(f"MTD\t{item}\t[,,{self.ols_lookup.quote_term_name(database['name'])},{value}]")
else:
databaseRows.append(f"MTD\t{item}\t[,,\"no database\",null]")
if "prefix" in database and not isnull(database["prefix"]):
databaseRows.append(f"MTD\t{item}-prefix\t{database['prefix']}")
if "version" in database and not isnull(database["version"]):
databaseRows.append(f"MTD\t{item}-version\t{database['version']}")
else:
databaseRows.append(f"MTD\t{item}-version\tUnknown")
if "uri" in database and not isnull(database["uri"]):
databaseRows.append(f"MTD\t{item}-uri\t{database['uri']}")
else:
databaseRows.append(f"MTD\t{item}-uri\tnull")
mtdHead.extend(databaseRows)
def create_softwares(self, mtdHead):
softwares = pd.read_csv(self.softwares, sep=",", index_col="id")
softwareRows = []
for i, software in softwares.iterrows():
item = f"software[{i}]"
value = ""
if "value" in software and not isnull(software["value"]):
value = software["value"]
if "cv_term" in software and not isnull(software["cv_term"]):
softwareRows.append(f"MTD\t{item}\t{self.ols_lookup.resolve_term(software['cv_term'], value)}")
elif "name" in software and not isnull(software["name"]):
softwareRows.append(f"MTD\t{item}\t[,,{self.ols_lookup.quote_term_name(software['name'])},{value}]")
if "setting" in software and not isnull(software["setting"]):
for setting in software["setting"].split("|"):
softwareRows.append(f"MTD\t{item}-setting\t{setting}")
mtdHead.extend(softwareRows)
def create_instruments(self, mtdHead):
instrumentRows = []
instruments = pd.read_csv(self.instruments, sep=",", index_col="id")
instrumentRows = []
for i, instrument in instruments.iterrows():
item = f"instrument[{i}]"
value = ""
if "name" in instrument and not isnull(instrument["name"]):
instrumentRows.append(f"MTD\t{item}-name\t{self.ols_lookup.resolve_term(instrument['name'])}")
if "source" in instrument and not isnull(instrument["source"]):
instrumentRows.append(f"MTD\t{item}-source\t{self.ols_lookup.resolve_term(instrument['source'])}")
if "analyzer" in instrument and not isnull(instrument["analyzer"]):
instrumentRows.append(f"MTD\t{item}-analyzer\t{self.ols_lookup.resolve_term(instrument['analyzer'])}")
if "detector" in instrument and not isnull(instrument["detector"]):
instrumentRows.append(f"MTD\t{item}-detector\t{self.ols_lookup.resolve_term(instrument['detector'])}")
mtdHead.extend(instrumentRows)
def create_study_variables(self, df, studyVariables, mtdHead, sample_to_assay_pos):
studyVariableRows = []
for i, studyVariableValue in enumerate(studyVariables):
i += 1
sampleIds = df[df["StudyVariable"]==studyVariableValue]["Sample"].astype(str).tolist()
assayIds = "|".join(["assay["+str(sample_to_assay_pos[x])+"]" for x in sampleIds])
studyVariableRows.append(f"MTD\tstudy_variable[{i}]\t{studyVariableValue}")
studyVariableRows.append(f"MTD\tstudy_variable[{i}]-description\t{studyVariableValue}")
studyVariableRows.append(f"MTD\tstudy_variable[{i}]-assay_refs\t{assayIds}")
mtdHead.extend(studyVariableRows)
def create_assays(self, samples, mtdHead, assay_to_msrun_pos, sample_to_assay_pos):
assayRows = []
for i, sample in enumerate(samples):
i += 1
sample_to_assay_pos[sample] = i
assayRows.append(f"MTD\tassay[{i}]\tAssay for Sample no {sample}")
assayRows.append(f"MTD\tassay[{i}]-sample_ref\tsample[{i}]")
assayRows.append(f"MTD\tassay[{i}]-ms_run_ref\tms_run[{assay_to_msrun_pos[sample]}]")
mtdHead.extend(assayRows)
def create_ms_runs(self, samples, mtdHead, assay_to_msrun_pos):
msRunRows = []
for i, sample in enumerate(samples):
i += 1
assay_to_msrun_pos[sample] = i
msRunRows.append(f"MTD\tms_run[{i}]-location\tfile://Sample_no_{sample}.mzML")
msRunRows.append(f"MTD\tms_run[{i}]-scan_polarity[1]\t[MS, MS:1000130, positive scan, ]")
mtdHead.extend(msRunRows)
def create_samples(self, samples, sampleSpecies, sampleTissues, sampleDiseases, sampleCellTypes, sampleGender, mtdHead, sample_to_sample_pos):
sampleRows = []
for i, sample in enumerate(samples):
i += 1
sample_to_sample_pos[sample] = i
sampleRows.append(f"MTD\tsample[{i}]\tSample no. {sample}")
if len(sampleSpecies) > 0:
for j, species in enumerate(sampleSpecies[sample]):
j += 1
sampleRows.append(f"MTD\tsample[{i}]-species[{j}]\t{self.ols_lookup.resolve_term(species)}")
if len(sampleTissues) > 0:
for j, tissue in enumerate(sampleTissues[sample]):
j += 1
sampleRows.append(f"MTD\tsample[{i}]-tissue[{j}]\t{self.ols_lookup.resolve_term(tissue)}")
if len(sampleDiseases) > 0:
for j, disease in enumerate(sampleDiseases[sample]):
j += 1
sampleRows.append(f"MTD\tsample[{i}]-disease[{j}]\t{self.ols_lookup.resolve_term(disease)}")
if len(sampleCellTypes) > 0:
for j, cellType in enumerate(sampleCellTypes[sample]):
j += 1
sampleRows.append(f"MTD\tsample[{i}]-cell_type[{j}]\t{self.ols_lookup.resolve_term(cellType)}")
if len(sampleGender) > 0:
for j, gender in enumerate(sampleGender[sample]):
j += 1
sampleRows.append(f"MTD\tsample[{i}]-custom[{j}]\t[NCIT, NCIT:C17357, Gender, {self.ols_lookup.resolve_term_name(gender)}]")
mtdHead.extend(sampleRows)
def create_ontologies(self, mtdHead):
ontologyRows = []
for i, ontology in enumerate(self.ontologies):
i += 1
ontologyRows.append(f"MTD\tcv[{i}]-label\t{ontology}")
ontologyRows.append(f"MTD\tcv[{i}]-uri\t{self.ontologies[ontology].config.id}")
if self.ontologies[ontology].config.version == None:
ontUpdDate = self.ontologies[ontology].updated.split("T")[0]
ontologyRows.append(f"MTD\tcv[{i}]-version\t{ontUpdDate}")
else:
ontologyRows.append(f"MTD\tcv[{i}]-version\t{self.ontologies[ontology].config.version}")
ontologyRows.append(f"MTD\tcv[{i}]-full_name\t{self.ontologies[ontology].title}")
mtdHead.extend(ontologyRows)
def create_contacts(self, mtdHead):
contacts = pd.read_csv(self.contacts, sep=",", index_col="id")
contactRows = []
for i, contact in contacts.iterrows():
item = f"contact[{i}]"
if "name" in contact and not isnull(contact["name"]):
contactRows.append(f"MTD\t{item}-name\t{contact['name']}")
if "affiliation" in contact and not isnull(contact["affiliation"]):
contactRows.append(f"MTD\t{item}-affiliation\t{contact['affiliation']}")
if "email" in contact and not isnull(contact["email"]):
contactRows.append(f"MTD\t{item}-email\t{contact['email']}")
if "orcid" in contact and not isnull(contact["orcid"]):
contactRows.append(f"MTD\t{item}-orcid\t{contact['orcid']}")
mtdHead.extend(contactRows)
def create_publications(self, mtdHead):
publications = pd.read_csv(self.publications, sep=",", index_col="id")
publications
publicationRows = []
for i, publication in publications.iterrows():
item = f"publication[{i}]"
if "identifier" in publication:
publicationRows.append(f"MTD\t{item}\t{publication['identifier']}")
mtdHead.extend(publicationRows)
def create_id_and_quant(self, mtdHead):
quantifications = pd.read_csv(self.id_and_quant, sep=",")
quantificationRows = []
for i, quantification in quantifications.iterrows():
for column in quantification.keys():
print(quantification[column])
quantificationRows.append(f"MTD\t{column}\t{self.ols_lookup.resolve_term(quantification[column])}")
mtdHead.extend(quantificationRows)
def create_mtd_head(self, mztabHead):
mtdHead = []
mtdHead.append(f"MTD\tmzTab-version\t{mztabHead['mztabversion'][0]}")
mtdHead.append(f"MTD\tmzTab-ID\t{mztabHead['mztabid'][0]}")
mtdHead.append(f"MTD\ttitle\t{mztabHead['title'][0]}")
mtdHead.append(f"MTD\tdescription\t{mztabHead['description'][0]}")
return mtdHead