-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_gsm8k.py
209 lines (172 loc) · 9.64 KB
/
eval_gsm8k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
import re
import os
import argparse
import random
from tqdm import tqdm
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
StoppingCriteriaList
)
from utils import (
SpecificStringStoppingCriteria,
extract_predicted_answer,
extract_ground_truth
)
from datasets import load_dataset
from collections import Counter
import json
FEW_SHOT_PROMPT = """Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?
A: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have been 21 - 15 = 6. The answer is 6.
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39. The answer is 39.
Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?
A: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12 = 8. The answer is 8.
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
A: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys. 5 + 4 = 9. The answer is 9.
Q: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?
A: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?
A: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After losing 2 more, he had 35 - 2 = 33 golf balls. The answer is 33.
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 - 15 dollars left. 23 - 15 is 8. The answer is 8.
Q: {question}
A:"""
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='/home/bingxing2/home/scx6d1j/zgy/llama31')
parser.add_argument('--use_majority_vote', action='store_true')
parser.add_argument("--temp", type=float, default=0)
parser.add_argument('--n_votes', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=24)
parser.add_argument('--padding_side', type=str, default='left')
parser.add_argument('--max_new_tokens', type=int, default=512)
parser.add_argument('--type', choices=['few-shot', 'zero-shot', 'cot'],type=str, default='few-shot')
args = parser.parse_args()
random_seed = 42
torch.manual_seed(random_seed)
random.seed(random_seed)
print('Loading model and tokenizer...')
tokenizer = AutoTokenizer.from_pretrained(args.model)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = args.padding_side
model = AutoModelForCausalLM.from_pretrained(args.model, device_map='auto', torch_dtype=torch.float16)
print('\nLoading dataset...')
# dataset = load_dataset('gsm8k', "main", split='test')
dataset = load_dataset('/home/bingxing2/home/scx6d1j/zgy/eval_gsm8k-main/dataset', split='test')
datasize = len(dataset)
print('gsm8k test size:', datasize)
# Define a stopping condition for generation
generation_util = [
"Q:",
"</s>",
]
# 批量生成few shot 提示
def prompt_format(question):
if args.type == 'few-shot':
return FEW_SHOT_PROMPT.format(question=question)
elif args.type == 'zero-shot':
return 'Q: ' + question + '\nA:'
elif args.type == 'cot':
return "Q: {question}\nA: Let's think step by step.".format(question)
def prompt_and_ans(examples):
input_texts = []
ground_truth_answers = []
questions = examples['question']
answers = examples['answer']
for question, answer in zip(questions, answers):
input_texts.append(prompt_format(question))
ground_truth_answers.append( extract_ground_truth(answer))
return input_texts, ground_truth_answers
def extract_predicted_answers(output_texts):
model_answers = []
for output_text in output_texts:
model_answers.append(extract_predicted_answer(output_text))
return model_answers
def post_process_ans(output_texts, model_answers):
vote_model_answers = []
for output_text, model_answer in zip(output_texts, model_answers):
vote_model_answers.append({'text': output_text, 'numeric': model_answer})
return vote_model_answers
def compare_answer(examples, vote_model_answers, ground_truth_answers):
numeric_answers = [[] for _ in range(len(ground_truth_answers))]
filtered_answers = [[] for _ in range(len(ground_truth_answers))]
text_answers = [[] for _ in range(len(ground_truth_answers))]
for model_answers in vote_model_answers:
for i, model_answer in enumerate(model_answers):
if model_answer['numeric'] is not None:
filtered_answers[i].append(model_answer['numeric'])
numeric_answers[i].append(model_answer['numeric'])
text_answers[i].append(model_answer['text'])
results = []
# 一个批次的大小
assert len(model_answers) == len(ground_truth_answers), "数据出现了不对齐的现象"
orgin_questions = examples['question']
orgin_answers = examples['answer']
for i, ( filtered_answer, ground_truth_answer) in enumerate(zip(filtered_answers, ground_truth_answers)):
majority_answer = Counter(filtered_answer).most_common(1)[0][0] if filtered_answer else None
correct = (majority_answer == ground_truth_answer) if majority_answer is not None else False
results.append({
'question': orgin_questions[i],
'gold_answer_text': orgin_answers[i],
'model_answers_text': text_answers[i],
'extracted_model_answers': numeric_answers[i],
'extracted_gold_answer': ground_truth_answer,
'majority_answer': majority_answer,
'correct': correct
})
return results
results = []
batch_size = args.batch_size
batchs = datasize // batch_size
def one_batch_results(batch_example):
input_texts, ground_truth_answers = prompt_and_ans(batch_example)
tokenizer.pad_token_id = tokenizer.eos_token_id
inputs = tokenizer(input_texts, return_tensors='pt', padding=True).to(model.device)
stop_criteria = SpecificStringStoppingCriteria(tokenizer, generation_util, inputs)
stopping_criteria_list = StoppingCriteriaList([stop_criteria])
prompt_len = inputs['input_ids'].size(1)
vote_model_answers = []
if args.use_majority_vote:
for _ in range(args.n_votes):
with torch.no_grad():
outputs = model.generate(**inputs, temperature=args.temp, max_new_tokens=args.max_new_tokens, do_sample=True, return_dict_in_generate=True, pad_token_id=tokenizer.eos_token_id, stopping_criteria=stopping_criteria_list)
output_texts = tokenizer.batch_decode(outputs['sequences'][:, prompt_len:], skip_special_tokens=True)
# Extract the final answer from the model's output
model_answers = extract_predicted_answers(output_texts)
vote_model_answers.append(post_process_ans(output_texts, model_answers))
else:
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=args.max_new_tokens, return_dict_in_generate=True, pad_token_id=tokenizer.eos_token_id, stopping_criteria=stopping_criteria_list)
output_texts = tokenizer.batch_decode(outputs['sequences'][:, prompt_len:], skip_special_tokens=True)
model_answers = extract_predicted_answers(output_texts)
vote_model_answers.append(post_process_ans(output_texts, model_answers))
return compare_answer(batch_example, vote_model_answers, ground_truth_answers)
for i in tqdm(range(0, batchs), desc="evaluate"):
start = batch_size * i
batch_example = dataset[start: start + batch_size]
results += one_batch_results(batch_example)
if datasize % batch_size != 0:
batch_example = dataset[batchs * batch_size:]
results += one_batch_results(batch_example)
cnt = 0
for result in results:
if result['correct']:
cnt += 1
total = len(results)
print(f"Accuracy: {cnt} / {total} = {cnt / total :.4f}")
results.append({'accuracy': cnt / total})
os.makedirs(f'eval_results/{args.type}', exist_ok=True)
model_name = args.model.split('/')[-1]
result_file = f"eval_results/{args.type}/{model_name}"
if args.use_majority_vote:
result_file += f"_maj1@{args.n_votes}_temp{args.temp}"
result_file += "_results.json"
with open(result_file, 'w') as f:
json.dump(results, f, indent=4)
print(f"Results saved to {result_file}")
if __name__ == '__main__':
main()