-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsearch.rb
805 lines (663 loc) · 22.6 KB
/
search.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
# Search (Chapters 3-4)
#
# The way to use this code is to subclass Problem to create a class of problems,
# then create problem instances and solve them with calls to the various search
# functions.
=begin
## python stuff ##
from __future__ import generators
from utils import *
import agents
import math, random, sys, time, bisect, string
=end
require 'agents.rb'
require 'utils.rb'
#########################################################################
class Problem
# The abstract class for a formal problem. You should subclass this and
# implement the method successor, and possibly __init__, goal_test, and
# path_cost. Then you will create instances of your subclass and solve them
# with the various search functions.
attr_accessor :initial, :goal
def initialize(initial, goal=nil)
# The constructor specifies the initial state, and possibly a goal
# state, if there is a unique goal. Your subclass's constructor can add
# other arguments.
@initial = initial
@goal = goal
end
def successor(state)
# Given a state, return a sequence of (action, state) pairs reachable
# from this state. If there are many successors, consider an iterator
# that yields the successors one at a time, rather than building them
# all at once. Iterators will work fine within the framework.
end
def goal_test(state)
# Return True if the state is a goal. The default method compares the
# state to self.goal, as specified in the constructor. Implement this
# method if checking against a single self.goal is not enough.
state == @goal
end
def path_cost(c, state1, action, state2)
# Return the cost of a solution path that arrives at state2 from
# state1 via action, assuming cost c to get up to state1. If the problem
# is such that the path doesn't matter, this function will only look at
# state2. If the path does matter, it will consider c and maybe state1
# and action. The default method costs 1 for every step in the path.
c + 1
end
def value
# For optimization problems, each state has a value. Hill-climbing
# and related algorithms try to maximize this value.
end
end
#########################################################################
class Node
# A node in a search tree. Contains a pointer to the parent (the node
# that this is a successor of) and to the actual state for this node. Note
# that if a state is arrived at by two paths, then there are two nodes with
# the same state. Also includes the action that got us to this state, and
# the total path_cost (also known as g) to reach the node. Other functions
# may add an f and h value; see best_first_graph_search and astar_search for
# an explanation of how the f and h values are handled. You will not need to
# subclass this class.
attr_reader :state, :parent, :action, :path_cost, :depth
def initialize(state, parent=nil, action=nil, path_cost=0)
# Create a search tree Node, derived from a parent by an action.
@state = state
@parent = parent
@action = action
@path_cost = path_cost
@depth = 0
if parent
@depth = parent.depth + 1
end
end
def to_s
"<Node #{@state}>"
end
def path
# Create a list of nodes from the root to this node.
x, result = self, [self]
while x.parent
result << x.parent
x = x.parent
end
return result
end
def expand(problem)
# Return a list of nodes reachable from this node. [Fig. 3.8]
list = []
problem.successor(self.state).each do |act, next_|
list << Node.new(next_, self, act, problem.path_cost(self.path_cost, self.state, act, next_))
end
return list
end
end
#########################################################################
class SimpleProblemSolvingAgent < Agent
# Abstract framework for problem-solving agent. [Fig. 3.1]
def initialize
super
state = []
seq = []
def program(percept)
state = self.update_state(state, percept)
if not seq
goal = self.formulate_goal(state)
problem = self.formulate_problem(state, goal)
seq = self.search(problem)
end
action = seq[0]
seq[0,1] = []
return action
end
end
end
#########################################################################
## Uninformed Search algorithms
def tree_search(problem, fringe)
# Search through the successors of a problem to find a goal.
# The argument fringe should be an empty queue.
# Don't worry about repeated paths to a state. [Fig. 3.8]
fringe << Node.new(problem.initial)
while not fringe.empty?
node = fringe.pop
if problem.goal_test node.state
return node
end
fringe.concat node.expand(problem)
end
return nil
end
def breadth_first_tree_search(problem)
# Search the shallowest nodes in the search tree first. [p 74]
return tree_search(problem, FIFOQueue.new)
end
def depth_first_tree_search(problem)
# Search the deepest nodes in the search tree first. [p 74]
return tree_search(problem, stack)
end
def graph_search(problem, fringe)
# Search through the successors of a problem to find a goal.
# The argument fringe should be an empty queue.
# If two paths reach a state, only use the best one. [Fig. 3.18]
closed = {}
fringe << Node.new(problem.initial)
while not fringe.empty?
node = fringe.pop
if problem.goal_test node.state
return node
end
unless closed.include? node.state
closed[node.state] = true
fringe.concat node.expand(problem)
end
end
return nil
end
def breadth_first_graph_search(problem)
# Search the shallowest nodes in the search tree first. [p 74]
return graph_search(problem, FIFOQueue.new)
end
def depth_first_graph_search(problem)
# Search the deepest nodes in the search tree first. [p 74]
return graph_search(problem, stack)
end
def depth_limited_search(problem, limit=50)
# [Fig. 3.12]
def recursive_dls(node, problem, limit)
cutoff_occurred = false
if problem.goal_test node.stat
return node
elsif node.depth == limit
return 'cutoff'
else
node.expand(problem).each do |successor|
result = recursive_dls(successor, problem, limit)
if result == 'cutoff'
cutoff_occurred = true
elsif result != nil
return result
end
end
end
if cutoff_occurred
return 'cutoff'
else
return nil
end
end
# Body of depth_limited_search:
return recursive_dls(Node.new(problem.initial), problem, limit)
end
def iterative_deepening_search(problem)
# [Fig. 3.13]
(0..(2**30 - 1)).each do |depth|
result = depth_limited_search(problem, depth)
unless result == 'cutoff'
return result
end
end
end
#########################################################################
# Informed (Heuristic) Search
def best_first_graph_search(problem, f)
# Search the nodes with the lowest f scores first.
# You specify the function f(node) that you want to minimize; for example,
# if f is a heuristic estimate to the goal, then we have greedy best
# first search; if f is node.depth then we have depth-first search.
# There is a subtlety: the line "f = memoize(f, 'f')" means that the f
# values will be cached on the nodes as they are computed. So after doing
# a best first search you can examine the f values of the path returned.
#f = memoize(f, '@f')
return graph_search(problem, PriorityQueue.new(:min, f))
end
greedy_best_first_graph_search = method :best_first_graph_search
# Greedy best-first search is accomplished by specifying f(n) = h(n).
def astar_search(problem, h=nil)
# A* search is best-first graph search with f(n) = g(n)+h(n).
# You need to specify the h function when you call astar_search.
# Uses the pathmax trick: f(n) = max(f(n), g(n)+h(n)).
h = h or problem.method(:h)
f = proc{|n| [(n.respond_to?(:f) ? n.method(:f) : -$infinity), n.path_cost + h.call(n)].max}
return best_first_graph_search(problem, f)
end
#########################################################################
## Ohter search algorithms
def recursive_best_first_search(problem)
# [Fig. 4.5]
def rbfs(problem, node, flimit)
if problem.goal_test(node.state)
return node
end
successors = expand node, problem
if successors.length == 0
return nil, $infinity
end
successors.each do |s|
s.f = [s.path_cost + s.h, node.f].max
end
loop do
successors.sort lambda {|x, y| x.f - y.f} # Order by lowest f value
best = successors[0]
if best.f > flimit
return nil, best.f
end
alternative = successors[1]
result, best.f = rbfs problem, best, [flimit, alternatiev].min
unless result.nil?
return result
end
end
end
return rbfs(Node.new(problem.initial), infinity)
end
def hill_climbing(problem)
# From the initial node, keep choosing the neighbor with highest value,
# stopping when no neighbor is better. [Fig. 4.11]
current = Node.new problem.initial
loop do
neighbor = argmax expand(node, problem), Node.method(:value)
if neighbor.value <= current.value
return current.state
end
current = neighbor
end
end
def exp_schedule(k=20, lam=0.005, limit=100)
# One possible schedule function for simulated annealing
return lambda{|t| t < limit ? k * Math.exp(-lam * t) : 0}
end
def simulated_annealing(problem, schedule = exp_schedule())
# [Fig. 4.5]
current = Node.new problem.initial
(0..(2**30 - 1)).each do |t|
tt = schedule(t)
if tt == 0
return current
end
next_ = random.choice expand(node.problem)
delta_e = next_.path_cost - current.path_cost
if delta_e > 0 or probability(Math.exp(delta_e/tt))
current = next_
end
end
end
def online_dfs_agent(a)
# [Fig. 4.12]
### more
end
def lrta_star_agent(a)
# [Fig. 4.12]
#### more
end
def genetic_search(problem, fitness_fn, ngen=1000, pmut=0.0, n=20)
# Call genetic_algorithm on the appropriate parts of a problem.
# This requires that the problem has a successor function that generates
# reasonable states, and that it has a path_cost function that scores states.
# We use the negative of the path_cost function, because costs are to be
# minimized, while genetic-algorithm expects a fitness_fn to be maximized.
states = problem.successor(problem.initial_state)[0..n].map {|a, s| s}
states.shuffle!
fitness_fn = lambda{|s| - problem.path_cost(0, s, nil, s)}
return genetic_algorithm(states, fitness_fn, ngen, pmut)
end
def genetic_algorithm(population, fitness_fn, ngen=1000, pmut=0.0)
# [Fig. 4.7]
def reproduce(p1, p2)
c = rand p1.length
return p1[0..c] + p2[c..p2.length]
end
(9..ngen).each do |i|
new_population = []
population.length.times do |i|
p1, p2 = random_weighted_selection(population, 2, fitness_fn)
child = reproduce p1, p2
if rand > pmut
child.mutate
end
new_population.append child
end
population = new_population
end
return argmax(populaton, fitness_fn)
end
def random_weighted_selection(seg, n, weight_fn)
# Pick n elements of seq, weighted according to weight_fn.
# That is, apply weight_fn to each element of seq, add up the total.
# Then choose an element e with probability weight[e]/total.
# Repeat n times, with replacement.
totals = []
runningtotal = 0
seq.each do |item|
runningtotal += weight_fn itm
totals << runningtotal
end
selections = []
(0..n).times do
r = uniform_rand 0, totals[-1]
(0..seq.length).times do |i|
if totals[i] > r
selections.append seq[i]
break
end
end
end
return selections
end
#########################################################################
# The remainder of this file implements examples for the search algorithms.
#########################################################################
# Graphs and Graph Problems
class Graph
# A graph connects nodes (verticies) by edges (links). Each edge can also
# have a length associated with it. The constructor call is something like:
# g = Graph({'A': {'B': 1, 'C': 2})
# this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from
# A to B, and an edge of length 2 from A to C. You can also do:
# g = Graph({'A': {'B': 1, 'C': 2}, directed=False)
# This makes an undirected graph, so inverse links are also added. The graph
# stays undirected; if you add more links with g.connect('B', 'C', 3), then
# inverse link is also added. You can use g.nodes() to get a list of nodes,
# g.get('A') to get a dict of links out of A, and g.get('A', 'B') to get the
# length of the link from A to B. 'Lengths' can actually be any object at
# all, and nodes can be any hashable object.
def initialize(dict=nil, directed=true)
@dict = dict || {}
@directed = directed
make_undirected unless directed
end
def make_undirected
#Make a digraph into an undirected graph by adding symmetric edges.
@dict.each_key do |a|
@dict[a].each_pair do |b, distance|
connect1 b, a, distance
end
end
end
def connect(a, b, distance=1)
# Add a link from A and B of given distance, and also add the inverse
# link if the graph is undirected.
connect1 a, b, distance
connect1(b, a, distance) unless @directed
end
def connect1(a, b, distance)
# Add a link from A to B of given distance, in one direction only.
unless @dict.has_key? a
@dict[a] = {}
end
@dict[a][b] = distance
end
def get(a, b=nil)
# Return a link distance or a dict of {node: distance} entries.
# .get(a,b) returns the distance or None;
# .get(a) returns a dict of {node: distance} entries, possibly {}.
unless @dict.has_key? a
@dict[a] = {}
end
links = @dict
if b.nil?
return links
else
return links[b]
end
end
def nodes
# Return a list of nodes in the graph.
return @dict.keys
end
end
def undirectedGraph(dict=nil)
# Build a Graph where every edge (including future ones) goes both ways.
return Graph.new(dict, false)
end
def randomGraph(nodes=(0..10).to_a, min_links=2, width=400, height=300, curvature=lambda{uniform_rand(1.1, 1.5)})
# Construct a random graph, with the specified nodes, and random links.
# The nodes are laid out randomly on a (width x height) rectangle.
# Then each node is connected to the min_links nearest neighbors.
# Because inverse links are added, some nodes will have more connections.
# The distance between nodes is the hypotenuse times curvature(),
# where curvature() defaults to a random number between 1.1 and 1.5.
g = undirectedGraph
## singleton
def g.locations
@locations
end
def g.locations=(value)
@locations = value
end
## end singleton
g.locations = {}
## Build the cities
nodes.each do |node|
g.locations[node] = [rand(width), rand(height)]
end
## Build roads from each city to at least min_links nearest neighbors.
(0..min_links).times do |i|
nodes.each do |node|
if g[node].length < min_links
here = g.locations[node]
def distance_to_node(n)
if node == n || (g[node] || n)
return $infinity
end
return distance(g.locations[n], here)
end
neighbor = argmin(nodes, distance_to_node)
d = distance(g.locations[neighbor], here) * curvature
g.connect node, neighbor, Integer(d)
end
end
end
return g
end
romania = undirectedGraph({
"A"=>{"Z"=>75, "S"=>140, "T"=>118},
"B"=>{"U"=>85, "P"=>101, "G"=>90, "F"=>211},
"C"=>{"D"=>120, "R"=>146, "P"=>138},
"D"=>{"M"=>75},
"E"=>{"H"=>86},
"F"=>{"S"=>99},
"H"=>{"U"=>98},
"I"=>{"V"=>92, "N"=>87},
"L"=>{"T"=>111, "M"=>70},
"O"=>{"Z"=>71, "S"=>151},
"P"=>{"R"=>97},
"R"=>{"S"=>80},
"U"=>{"V"=>142}
})
## singleton
def romania.locations
@locations
end
def romania.locations=(value)
@locations = value
end
## end singleton
romania.locations = {
"A"=>[ 91, 492], "B"=>[400, 327], "C"=>[253, 288], "D"=>[165, 299],
"E"=>[562, 293], "F"=>[305, 449], "G"=>[375, 270], "H"=>[534, 350],
"I"=>[473, 506], "L"=>[165, 379], "M"=>[168, 339], "N"=>[406, 537],
"O"=>[131, 571], "P"=>[320, 368], "R"=>[233, 410], "S"=>[207, 457],
"T"=>[ 94, 410], "U"=>[456, 350], "V"=>[509, 444], "Z"=>[108, 531]
}
australia = undirectedGraph({
"T"=>{},
"SA"=>{"WA"=>1, "NT"=>1, "Q"=>1, "NSW"=>1, "V"=>1},
"NT"=>{"WA"=>1, "Q"=>1},
"NSW"=>{"Q"=>1, "V"=>1}})
## singleton
def australia.locations
@locations
end
def australia.locations=(value)
@locations = value
end
## end singleton
australia.locations = {"WA"=>[120, 24], "NT"=>[135, 20], "SA"=>[135, 30],
"Q"=>[145, 20], "NSW"=>[145, 32], "T"=>[145, 42], "V"=>[145, 37]}
class GraphProblem < Problem
# The problem of searching a graph from one node to another.
def initialize(initial, goal, graph)
super
@graph = graph
end
def successor(a)
# Return a list of (action, result) pairs.
return @graph[a].each_key.map{|b| [b,b]}
end
def path_cost(cost_so_far, a, action, b)
return cost_so_far + ((@graph[a] || b) || $infinity)
end
def h(node)
# h function is straight-line distance from a node's state to goal.
locs = (@graph.respond_to? :locations) ? @graph.locations : nil
if locs
return Integer(distance(locs[node.state], locs[@goal]))
else
return $infinity
end
end
end
#########################################################################
#### NOTE: NQueensProblem not working properly yet.
class NQueensProblem < Problem
# The problem of placing N queens on an NxN board with none attacking
# each other. A state is represented as an N-element array, where the
# a value of r in the c-th entry means there is a queen at column c,
# row r, and a value of None means that the c-th column has not been
# filled in left. We fill in columns left to right.
def initialize(n)
@n = n
@initial = [nil] * n
end
def successor(state)
# In the leftmost empty column, try all non-conflicting rows.
unless state[-1].nil?
return []
else
def place(col, row)
new_ = state.clone
new_[col] = row
return new_
end
col = state.index(nil)
return (0..@n).times.map{|row| [row, place(col,row)] if not conflicted(state, row, col)}
end
end
def conflicted(state, row, col)
# Would placing a queen at (row, col) conflict with anything?
(0..(col-1)).times do |c|
if conflict(row, col, state[c], c)
return true
end
end
return false
end
def conflict(row1, col1, row2, col2)
# Would putting two queens in (row1, col1) and (row2, col2) conflict?
## same row ## same column ## same \ diagonal
## same / diagona
ret = (row1 == row2) || (col1 == col2) || (row1-col1 == row2-col2) || (row1+col1 == row2+col2)
return ret
end
def goal_test(state)
# Check if all columns filled, no conflicts.
if state[-1].nil?
return false
end
(0..(state.length)).times do |c|
if conflicted(state, state[c], c)
return false
end
end
return true
end
end
################################################################################
## Inverse Boggle: Search for a high-scoring Boggle board. A good domain for
## iterative-repair and related search tehniques, as suggested by Justin Boyan.
ALPHABET = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
cubes16 = ['FORIXB', 'MOQABJ', 'GURILW', 'SETUPL',
'CMPDAE', 'ACITAO', 'SLCRAE', 'ROMASH',
'NODESW', 'HEFIYE', 'ONUDTK', 'TEVIGN',
'ANEDVZ', 'PINESH', 'ABILYT', 'GKYLEU']
def random_boggle(n=4)
# Return a random Boggle board of size n x n.
# We represent a board as a linear list of letters.
cubes = [(0..n*n).map{|i| cubes16[i % 16] }]
cubes.shuffle!
return cubes.map{|c| c[rand(c.length)]}
end
## The best 5x5 board found by Boyan, with our word list this board scores
## 2274 words, for a score of 9837
boyan_best = %w{R S T C S D E I A E G N L R P E A T E S M S S I D}
def print_boggle(board)
# Print the board in 2-d array.
n2 = board.length
n = exact_sqrt n2
(0..n2).times do |i|
if i % n == 0
print
end
if board[i] == 'Q'
print 'Qu'
else
print board[i].to_s + ' '
end
print
end
end
def boggle_neighbors(n2, cache={})
# Return a list of lists, where the i-th element is the list of indexes
# for the neighbors of square i.
if cache.has_key? n2
return cache[n2]
end
n = exact_sqrt n2
neighbors = [nil] * n2
(0..n2).times do |i|
neighbors[i] = []
on_top = i < n
on_bottom = i >= ( n2 - n )
on_left = i % n == 0
on_right = (i + 1) % n == 0
unless on_top
neighbors[i] << (i - n)
unless on_left
neighbors[i] << (i - n - 1)
end
unless on_right
neighbors[i] << (i - n + 1)
end
end
unless on_bottom
neighbors[i] << (i + n)
unless on_left
neighbors[i] << (i + n - 1)
end
unless on_right
neighbors[i] << (i + n + 1)
end
end
unless on_left
neighbors[i] << (i - 1)
end
unless on_right
neighbors[i] << (i + 1)
end
end
cache[n2] = neighbors
returns neighbors
end
def exact_sqrt(n2)
# if n2 is a perfect square, return its square root, else raise error.
include Math
n = Math.sqrt(n2).to_i
if n * n == n2
return n
else
raise "The number is not a perfect square."
end
end