forked from albanie/collaborative-experts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_baselines.py
executable file
·209 lines (183 loc) · 7.05 KB
/
train_baselines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""Simple baselines for the CVPR2020 video pentathlon challenge
%run -i misc/cvpr2020_challenge/train_baselines.py --mini_train --train_single_epoch
ipy misc/cvpr2020_challenge/train_baselines.py -- --yaspify
"""
import sys
import json
import argparse
from typing import Dict, List
from pathlib import Path
from datetime import datetime
from subprocess import PIPE, Popen
from yaspi.yaspi import Yaspi
from typeguard import typechecked
from utils.util import filter_cmd_args
from misc.cvpr2020_challenge.prepare_submission import generate_predictions
@typechecked
def launch_and_monitor_cmd(cmd: str) -> List:
lines = []
with Popen(cmd.split(), stdout=PIPE, bufsize=1, universal_newlines=True) as proc:
for line in proc.stdout:
print(line, end='')
lines.append(line)
return lines
@typechecked
def dataset_name2json_key(dataset: str) -> str:
# Ensure that ActivityNet dataset key is stored with CamelCase convention when
# storing in jsons
json_key = {"activity-net": "ActivityNet"}.get(dataset, dataset)
return json_key
@typechecked
def parse_paths_from_logs(logs: List[str], queries: List[str],) -> Dict[str, str]:
prefixes = {
"predictions": "Saved similarity matrix predictions to",
"ckpts": "The best performing ckpt can be found at",
}
paths = {}
for key in queries:
prefix = prefixes[key]
matches = [x.startswith(prefix) for x in logs]
found = sum(matches)
assert found == 1, f"Expected to find one match for `{prefix}`, found {found}"
pos = matches.index(True)
paths[key] = logs[pos].rstrip().split(" ")[-1]
return paths
@typechecked
def train_baseline_for_dataset(
challenge_config_dir: Path,
mini_train: bool,
train_single_epoch: bool,
device: int,
dataset: str,
) -> Dict[str, str]:
folder = dataset.lower()
config_path = challenge_config_dir / folder / "baseline-public-trainval.json"
flags = f" --config {config_path} --device {device}"
if mini_train:
flags += f" --mini_train"
if train_single_epoch:
flags += f" --train_single_epoch"
cmd = f"python -u train.py {flags}"
print(f"Launching baseline for {dataset} with command: {cmd}")
logs = launch_and_monitor_cmd(cmd=cmd)
exp_paths = parse_paths_from_logs(logs, queries=["predictions", "ckpts"])
return exp_paths
@typechecked
def train_baselines(
dest_dir: Path,
challenge_config_dir: Path,
datasets: List[str],
slurm: bool,
mini_train: bool,
train_single_epoch: bool,
device: int,
timestamp: str,
aggregate: bool = False,
):
challenge_phase = "public_server_val"
fname = f"baselines-{timestamp}-{challenge_phase}-{'-'.join(datasets)}.json"
outputs = {key: {} for key in ("predictions", "ckpts")}
dest_dir.mkdir(exist_ok=True, parents=True)
dest_paths = {key: dest_dir / f"{key}-{fname}" for key in outputs}
if aggregate:
for dataset in datasets:
fname = f"baselines-{timestamp}-{challenge_phase}-{dataset}.json"
for key in outputs:
with open(dest_dir / f"{key}-{fname}", "r") as f:
outputs[key].update(json.load(f))
else:
for dataset in datasets:
exp_paths = train_baseline_for_dataset(
dataset=dataset,
device=device,
mini_train=mini_train,
train_single_epoch=train_single_epoch,
challenge_config_dir=challenge_config_dir,
)
dataset_key = dataset_name2json_key(dataset)
outputs["ckpts"][dataset_key] = exp_paths["ckpts"]
outputs["predictions"][dataset_key] = {challenge_phase:
exp_paths["predictions"]}
for key, dest_path in dest_paths.items():
print(f"Writing baseline {key} list to {dest_path}")
with open(dest_path, "w") as f:
json.dump(outputs[key], f, indent=4, sort_keys=True)
if not slurm:
generate_predictions(
refresh=True,
validate=True,
dest_dir=dest_dir,
challenge_phase=challenge_phase,
predictions_path=dest_paths["predictions"],
)
@typechecked
def train_baselines_with_yaspi(
yaspi_defaults_path: Path,
common_kwargs: Dict,
timestamp: str,
datasets: List[str],
):
with open(yaspi_defaults_path, "r") as f:
yaspi_defaults = json.load(f)
cmd_args = sys.argv
remove = ["--yaspify", "--datasets"]
cmd_args = filter_cmd_args(cmd_args, remove=remove)
cmd_args.extend(["--timestamp", timestamp])
base_cmd = f"python {' '.join(cmd_args)}"
job_name = f"baselines-{timestamp}"
job_queue = [f'"--datasets {dataset}"' for dataset in datasets]
job_queue = " ".join(job_queue)
job = Yaspi(
cmd=base_cmd,
job_queue=job_queue,
job_name=job_name,
job_array_size=len(datasets),
**yaspi_defaults,
)
job.submit(watch=True, conserve_resources=5)
train_baselines(**common_kwargs, aggregate=True)
def main():
parser = argparse.ArgumentParser(description="train baselines")
parser.add_argument("--debug", action="store_true", help="launch in debug mode")
parser.add_argument("--timestamp")
parser.add_argument("--yaspify", action="store_true", help="launch via slurm")
parser.add_argument("--slurm", action="store_true")
parser.add_argument("--device", type=int, default=0,
help="gpu device to use for training")
parser.add_argument("--datasets", nargs="+",
default=["MSRVTT", "MSVD", "DiDeMo", "YouCook2", "activity-net"],
help="The challenge datasets to train baselines for")
parser.add_argument('--mini_train', action="store_true")
parser.add_argument('--train_single_epoch', action="store_true")
parser.add_argument('--dest_dir', type=Path,
default="data/cvpr2020-challenge-submissions")
parser.add_argument('--challenge_config_dir', type=Path,
default="configs/cvpr2020-challenge")
parser.add_argument("--yaspi_defaults_path", type=Path,
default="misc/yaspi_gpu_defaults.json")
args = parser.parse_args()
if args.timestamp:
timestamp = args.timestamp
else:
timestamp = datetime.now().strftime(r"%Y-%m-%d_%H-%M-%S")
common_kwargs = dict(
device=args.device,
timestamp=timestamp,
dest_dir=args.dest_dir,
datasets=args.datasets,
slurm=args.slurm,
mini_train=args.mini_train,
train_single_epoch=args.train_single_epoch,
challenge_config_dir=args.challenge_config_dir,
)
if args.yaspify:
train_baselines_with_yaspi(
datasets=args.datasets,
timestamp=timestamp,
common_kwargs=common_kwargs,
yaspi_defaults_path=args.yaspi_defaults_path
)
else:
train_baselines(**common_kwargs)
if __name__ == "__main__":
main()