|
| 1 | +/- |
| 2 | +Copyright (c) 2025 Ching-Tsun Chou. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Ching-Tsun Chou |
| 5 | +-/ |
| 6 | + |
| 7 | +import Mathlib.Algebra.Order.Sub.Basic |
| 8 | +import Mathlib.Data.Nat.Nth |
| 9 | +import Mathlib.Tactic |
| 10 | + |
| 11 | +namespace Cslib |
| 12 | + |
| 13 | +open Function Set |
| 14 | + |
| 15 | +/-! |
| 16 | +Given a strictly monotonic function `φ : ℕ → ℕ` and `k : ℕ` with `k ≥ ϕ 0`, |
| 17 | +`Nat.segment φ k` is the unique `m : ℕ` such that `φ m ≤ k < φ (k + 1)`. |
| 18 | +`Nat.segment φ k` is defined to be 0 for `k < ϕ 0`. |
| 19 | +This file defines `Nat.segment` and proves various properties aboout it. |
| 20 | +-/ |
| 21 | +noncomputable def Nat.segment (φ : ℕ → ℕ) (k : ℕ) : ℕ := |
| 22 | + open scoped Classical in |
| 23 | + Nat.count (· ∈ range φ) (k + 1) - 1 |
| 24 | + |
| 25 | +variable {φ : ℕ → ℕ} |
| 26 | + |
| 27 | +/-- Any strictly monotonic function `φ : ℕ → ℕ` has an infinite range. -/ |
| 28 | +theorem Nat.strict_mono_infinite (hm : StrictMono φ) : |
| 29 | + (range φ).Infinite := by |
| 30 | + exact infinite_range_of_injective hm.injective |
| 31 | + |
| 32 | +/-- Any infinite suset of `ℕ` is the range of a strictly monotonic function. -/ |
| 33 | +theorem Nat.infinite_strict_mono {ns : Set ℕ} (h : ns.Infinite) : |
| 34 | + ∃ φ : ℕ → ℕ, StrictMono φ ∧ range φ = ns := by |
| 35 | + use Nat.nth (· ∈ ns) ; constructor |
| 36 | + · exact Nat.nth_strictMono h |
| 37 | + · exact Nat.range_nth_of_infinite h |
| 38 | + |
| 39 | +open scoped Classical in |
| 40 | +/-- There is a gap between two successive occurrences of a predicate `p : ℕ → Prop`, |
| 41 | +assuming `p` (as a set) is infinite. -/ |
| 42 | +theorem Nat.nth_succ_gap {p : ℕ → Prop} (hf : (setOf p).Infinite) (n : ℕ) : |
| 43 | + ∀ k < Nat.nth p (n + 1) - Nat.nth p n, k > 0 → ¬ p (k + Nat.nth p n) := by |
| 44 | + intro k h_k1 h_k0 h_p_k |
| 45 | + let m := Nat.count p (k + Nat.nth p n) |
| 46 | + have h_k_ex : Nat.nth p m = k + Nat.nth p n := by simp [m, Nat.nth_count h_p_k] |
| 47 | + have h_n_m : n < m := by apply (Nat.nth_lt_nth hf).mp ; omega |
| 48 | + have h_m_n : m < n + 1 := by apply (Nat.nth_lt_nth hf).mp ; omega |
| 49 | + omega |
| 50 | + |
| 51 | +/-- For a strictly monotonic function `φ : ℕ → ℕ`, `φ n` is exactly the n-th |
| 52 | +element of the range of `φ`. -/ |
| 53 | +theorem Nat.nth_of_strict_mono (hm : StrictMono φ) (n : ℕ) : |
| 54 | + φ n = Nat.nth (· ∈ range φ) n := by |
| 55 | + rw [← Nat.nth_comp_of_strictMono hm (by simp)] |
| 56 | + · simp |
| 57 | + intro hf ; exfalso |
| 58 | + have : (range φ).Infinite := strict_mono_infinite hm |
| 59 | + exact absurd hf this |
| 60 | + |
| 61 | +open scoped Classical in |
| 62 | +/-- If `φ 0 = 0`, then `0` is below any `n` not in the range of `φ`. -/ |
| 63 | +theorem Nat.count_notin_range_pos (h0 : φ 0 = 0) (n : ℕ) (hn : n ∉ range φ) : |
| 64 | + Nat.count (· ∈ range φ) n > 0 := by |
| 65 | + have h0' : 0 ∈ range φ := by use 0 |
| 66 | + have h1 : n ≠ 0 := by rintro ⟨rfl⟩ ; contradiction |
| 67 | + have h2 : 1 ≤ n := by omega |
| 68 | + have h3 := Nat.count_monotone (· ∈ range φ) h2 |
| 69 | + simp only [Nat.count_succ, Nat.count_zero, h0', ↓reduceIte, zero_add, gt_iff_lt] at h3 ⊢ |
| 70 | + omega |
| 71 | + |
| 72 | +/-- For a strictly monotonic function `φ : ℕ → ℕ`, no number (strictly) between |
| 73 | +`φ m` and ` φ (m + 1)` is in the range of `φ`. -/ |
| 74 | +theorem Nat.strict_mono_range_gap (hm : StrictMono φ) {m k : ℕ} |
| 75 | + (hl : φ m < k) (hu : k < φ (m + 1)) : k ∉ range φ := by |
| 76 | + rw [nth_of_strict_mono hm m] at hl |
| 77 | + rw [nth_of_strict_mono hm (m + 1)] at hu |
| 78 | + have h_inf := strict_mono_infinite hm |
| 79 | + have h_gap := nth_succ_gap (p := (· ∈ range φ)) h_inf m |
| 80 | + (k - Nat.nth (· ∈ range φ) m) (by omega) (by omega) |
| 81 | + rw [(show k - Nat.nth (· ∈ range φ) m + Nat.nth (· ∈ range φ) m = k by omega)] at h_gap |
| 82 | + exact h_gap |
| 83 | + |
| 84 | +open scoped Classical in |
| 85 | +/-- For a strictly monotonic function `φ : ℕ → ℕ`, the segment of `φ k` is `k`. -/ |
| 86 | +theorem Nat.segment_idem (hm : StrictMono φ) (k : ℕ) : |
| 87 | + segment φ (φ k) = k := by |
| 88 | + have h1 : Nat.count (· ∈ range φ) (φ k + 1) = Nat.count (· ∈ range φ) (φ k) + 1 := by |
| 89 | + apply Nat.count_succ_eq_succ_count ; simp |
| 90 | + rw [segment, h1, Nat.add_one_sub_one, nth_of_strict_mono hm] |
| 91 | + have h_eq := Nat.count_nth_of_infinite (p := (· ∈ range φ)) <| strict_mono_infinite hm |
| 92 | + rw [h_eq] |
| 93 | + |
| 94 | +open scoped Classical in |
| 95 | +/-- For a strictly monotonic function `φ : ℕ → ℕ`, `segment φ k = 0` for all `k < φ 0`. -/ |
| 96 | +theorem Nat.segment_pre_zero (hm : StrictMono φ) {k : ℕ} (h : k < φ 0) : |
| 97 | + segment φ k = 0 := by |
| 98 | + have h1 : Nat.count (· ∈ range φ) (k + 1) = 0 := by |
| 99 | + apply Nat.count_of_forall_not |
| 100 | + rintro n h_n ⟨i, rfl⟩ |
| 101 | + have := StrictMono.monotone hm <| zero_le i |
| 102 | + omega |
| 103 | + rw [segment, h1] |
| 104 | + |
| 105 | +/-- For a strictly monotonic function `φ : ℕ → ℕ` with `φ 0 = 0`, `segment φ 0 = 0`. -/ |
| 106 | +theorem Nat.segment_zero (hm : StrictMono φ) (h0 : φ 0 = 0) : |
| 107 | + segment φ 0 = 0 := by |
| 108 | + calc _ = segment φ (φ 0) := by simp [h0] |
| 109 | + _ = _ := by simp [segment_idem hm] |
| 110 | + |
| 111 | +open scoped Classical in |
| 112 | +/-- A slight restatement of the definition of `segment` which has proven useful. -/ |
| 113 | +theorem Nat.segment_plus_one (h0 : φ 0 = 0) (k : ℕ) : |
| 114 | + segment φ k + 1 = Nat.count (· ∈ range φ) (k + 1) := by |
| 115 | + suffices _ : Nat.count (· ∈ range φ) (k + 1) ≠ 0 by unfold segment ; omega |
| 116 | + apply Nat.count_ne_iff_exists.mpr ; use 0 ; grind |
| 117 | + |
| 118 | +open scoped Classical in |
| 119 | +/-- For a strictly monotonic function `φ : ℕ → ℕ` with `φ 0 = 0`, |
| 120 | +`k < φ (segment φ k + 1)` for all `k : ℕ`. -/ |
| 121 | +theorem Nat.segment_upper_bound (hm : StrictMono φ) (h0 : φ 0 = 0) (k : ℕ) : |
| 122 | + k < φ (segment φ k + 1) := by |
| 123 | + rw [nth_of_strict_mono hm (segment φ k + 1), segment_plus_one h0 k] |
| 124 | + suffices _ : k + 1 ≤ Nat.nth (· ∈ range φ) (Nat.count (· ∈ range φ) (k + 1)) by omega |
| 125 | + apply Nat.le_nth_count |
| 126 | + exact strict_mono_infinite hm |
| 127 | + |
| 128 | +open scoped Classical in |
| 129 | +/-- For a strictly monotonic function `φ : ℕ → ℕ` with `φ 0 = 0`, |
| 130 | +`φ (segment φ k) ≤ k` for all `k : ℕ`. -/ |
| 131 | +theorem Nat.segment_lower_bound (hm : StrictMono φ) (h0 : φ 0 = 0) (k : ℕ) : |
| 132 | + φ (segment φ k) ≤ k := by |
| 133 | + rw [nth_of_strict_mono hm (segment φ k), segment] |
| 134 | + rcases Classical.em (k ∈ range φ) with h_k | h_k |
| 135 | + · have h1 : Nat.count (· ∈ range φ) (k + 1) = Nat.count (· ∈ range φ) k + 1 := by |
| 136 | + exact Nat.count_succ_eq_succ_count h_k |
| 137 | + rw [h1, Nat.add_one_sub_one, Nat.nth_count h_k] |
| 138 | + · have h2 : Nat.count (· ∈ range φ) (k + 1) = Nat.count (· ∈ range φ) k := by |
| 139 | + exact Nat.count_succ_eq_count h_k |
| 140 | + rw [h2] |
| 141 | + suffices _ : Nat.nth (· ∈ range φ) (Nat.count (· ∈ range φ) k - 1) < k by omega |
| 142 | + apply Nat.nth_lt_of_lt_count |
| 143 | + have : Nat.count (· ∈ range φ) k > 0 := by exact count_notin_range_pos h0 k h_k |
| 144 | + omega |
| 145 | + |
| 146 | +open scoped Classical in |
| 147 | +/-- For a strictly monotonic function `φ : ℕ → ℕ`, all `k` satisfying `φ m ≤ k < φ (m + 1)` |
| 148 | +has `segment φ k = m`. -/ |
| 149 | +theorem Nat.segment_range_val (hm : StrictMono φ) {m k : ℕ} |
| 150 | + (hl : φ m ≤ k) (hu : k < φ (m + 1)) : segment φ k = m := by |
| 151 | + obtain (rfl | hu') := show φ m = k ∨ φ m < k by omega |
| 152 | + · exact segment_idem hm m |
| 153 | + obtain ⟨j, h_j, rfl⟩ : ∃ j < φ (m + 1) - φ m - 1, k = j + φ m + 1 := by use (k - φ m - 1) ; omega |
| 154 | + induction j |
| 155 | + case zero => |
| 156 | + have h1 : Nat.count (· ∈ range φ) (φ m + 1) = Nat.count (· ∈ range φ) (φ m) + 1 := by |
| 157 | + apply Nat.count_succ_eq_succ_count ; use m |
| 158 | + have h2 : Nat.count (· ∈ range φ) (φ m + 1 + 1) = Nat.count (· ∈ range φ) (φ m + 1) := by |
| 159 | + apply Nat.count_succ_eq_count |
| 160 | + apply strict_mono_range_gap hm (show φ m < φ m + 1 by omega) ; omega |
| 161 | + have h3 := nth_of_strict_mono hm m |
| 162 | + rw [segment, zero_add, h2, h1, Nat.add_one_sub_one, h3] |
| 163 | + apply Nat.count_nth_of_infinite (strict_mono_infinite hm) |
| 164 | + case succ j h_ind => |
| 165 | + specialize h_ind (by omega) (by omega) (by omega) (by omega) |
| 166 | + have h1 : Nat.count (· ∈ range φ) (j + 1 + φ m + 1) = Nat.count (· ∈ range φ) (j + 1 + φ m) := by |
| 167 | + apply Nat.count_succ_eq_count |
| 168 | + apply strict_mono_range_gap hm (show φ m < j + 1 + φ m by omega) ; omega |
| 169 | + have h2 : Nat.count (· ∈ range φ) (j + 1 + φ m + 1 + 1) = |
| 170 | + Nat.count (· ∈ range φ) (j + 1 + φ m + 1) := by |
| 171 | + apply Nat.count_succ_eq_count |
| 172 | + apply strict_mono_range_gap hm (show φ m < j + 1 + φ m + 1 by omega) ; omega |
| 173 | + rw [segment, (show j + «φ» m + 1 = j + 1 + φ m by omega), h1] at h_ind |
| 174 | + rw [segment, h2, h1, h_ind] |
| 175 | + |
| 176 | +/-- For a strictly monotonic function `φ : ℕ → ℕ` with `φ 0 = 0`, |
| 177 | +`φ` and `segment φ` form a Galois connection. -/ |
| 178 | +theorem Nat.segment_galois_connection (hm : StrictMono φ) (h0 : φ 0 = 0) : |
| 179 | + GaloisConnection φ (segment φ) := by |
| 180 | + intro m k ; constructor |
| 181 | + · intro h |
| 182 | + by_contra! h_con |
| 183 | + have h1 : segment φ k + 1 ≤ m := by omega |
| 184 | + have := (StrictMono.le_iff_le hm).mpr h1 |
| 185 | + have := segment_upper_bound hm h0 k |
| 186 | + omega |
| 187 | + · intro h |
| 188 | + by_contra! h_con |
| 189 | + have := (StrictMono.le_iff_le hm).mpr h |
| 190 | + have := segment_lower_bound hm h0 k |
| 191 | + omega |
| 192 | + |
| 193 | +/-- Nat.segment' is a helper function that will be proved to be equal to `Nat.segment`. |
| 194 | +It facilitates the proofs of some theorems below. -/ |
| 195 | +noncomputable def Nat.segment' (φ : ℕ → ℕ) (k : ℕ) : ℕ := |
| 196 | + segment (φ · - φ 0) (k - φ 0) |
| 197 | + |
| 198 | +private lemma base_zero_shift (φ : ℕ → ℕ) : |
| 199 | + (φ · - φ 0) 0 = 0 := by |
| 200 | + simp |
| 201 | + |
| 202 | +private lemma base_zero_strict_mono (hm : StrictMono φ) : |
| 203 | + StrictMono (φ · - φ 0) := by |
| 204 | + intro m n h_m_n ; simp |
| 205 | + have := hm h_m_n |
| 206 | + have : φ 0 ≤ φ m := by simp [StrictMono.le_iff_le hm] |
| 207 | + have : φ 0 ≤ φ n := by simp [StrictMono.le_iff_le hm] |
| 208 | + omega |
| 209 | + |
| 210 | +open scoped Classical in |
| 211 | +/-- For a strictly monotonic function `φ : ℕ → ℕ`, |
| 212 | +`segment' φ` and `segment φ` are actually equal. -/ |
| 213 | +theorem Nat.segment'_eq_segment (hm : StrictMono φ) : |
| 214 | + segment' φ = segment φ := by |
| 215 | + ext k ; unfold segment' |
| 216 | + rcases (show k < φ 0 ∨ k ≥ φ 0 by omega) with h_k | h_k |
| 217 | + · have h0 : segment (φ · - φ 0) (k - φ 0) = 0 := by |
| 218 | + rw [show k - φ 0 = 0 by omega] |
| 219 | + exact segment_zero (base_zero_strict_mono hm) (base_zero_shift φ) |
| 220 | + rw [h0, segment_pre_zero hm h_k] |
| 221 | + unfold segment ; congr 1 |
| 222 | + simp only [Nat.count_eq_card_filter_range] |
| 223 | + suffices h : ∃ f, BijOn f |
| 224 | + ({x ∈ Finset.range (k - φ 0 + 1) | x ∈ range fun x => φ x - φ 0}).toSet |
| 225 | + ({x ∈ Finset.range (k + 1) | x ∈ range φ}).toSet by |
| 226 | + obtain ⟨f, h_bij⟩ := h |
| 227 | + exact BijOn.finsetCard_eq f h_bij |
| 228 | + use (fun n ↦ n + φ 0) ; unfold BijOn ; constructorm* _ ∧ _ |
| 229 | + · intro n ; simp only [mem_range, Finset.coe_filter, Finset.mem_range, mem_setOf_eq] |
| 230 | + rintro ⟨h_n, i, rfl⟩ |
| 231 | + have := StrictMono.monotone hm <| zero_le i |
| 232 | + constructor |
| 233 | + · omega |
| 234 | + · use i ; omega |
| 235 | + · apply injOn_of_injective ; intro i j ; grind |
| 236 | + · intro n ; simp only [mem_range, Finset.coe_filter, Finset.mem_range, mem_setOf_eq, mem_image] |
| 237 | + rintro ⟨h_n, i, rfl⟩ |
| 238 | + have := StrictMono.monotone hm <| zero_le i |
| 239 | + use (φ i - φ 0) ; constructorm* _ ∧ _ |
| 240 | + · omega |
| 241 | + · use i |
| 242 | + · omega |
| 243 | + |
| 244 | +/-- For a strictly monotonic function `φ : ℕ → ℕ`, `segment φ k = 0` for all `k ≤ φ 0`. -/ |
| 245 | +theorem Nat.segment_zero' (hm : StrictMono φ) {k : ℕ} (h : k ≤ φ 0) : |
| 246 | + segment φ k = 0 := by |
| 247 | + rw [← segment'_eq_segment hm, segment', (show k - φ 0 = 0 by omega)] |
| 248 | + exact segment_zero (base_zero_strict_mono hm) (base_zero_shift φ) |
| 249 | + |
| 250 | +/-- For a strictly monotonic function `φ : ℕ → ℕ`, `k < φ (segment φ k + 1)` for all `k ≥ φ 0`. -/ |
| 251 | +theorem Nat.segment_upper_bound' (hm : StrictMono φ) {k : ℕ} (h : φ 0 ≤ k) : |
| 252 | + k < φ (segment φ k + 1) := by |
| 253 | + rw [← segment'_eq_segment hm, segment'] |
| 254 | + have := segment_upper_bound (base_zero_strict_mono hm) (base_zero_shift φ) (k - φ 0) |
| 255 | + omega |
| 256 | + |
| 257 | +/-- For a strictly monotonic function `φ : ℕ → ℕ`, `φ (segment φ k) ≤ k` for all `k ≥ φ 0`. -/ |
| 258 | +theorem Nat.segment_lower_bound' (hm : StrictMono φ) {k : ℕ} (h : φ 0 ≤ k) : |
| 259 | + φ (segment φ k) ≤ k := by |
| 260 | + rw [← segment'_eq_segment hm, segment'] |
| 261 | + have := segment_lower_bound (base_zero_strict_mono hm) (base_zero_shift φ) (k - φ 0) |
| 262 | + omega |
| 263 | + |
| 264 | +end Cslib |
0 commit comments