|
| 1 | +/- |
| 2 | +Copyright (c) 2025 Ching-Tsun Chou. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Ching-Tsun Chou |
| 5 | +-/ |
| 6 | + |
| 7 | +import Mathlib.Computability.Language |
| 8 | +import Mathlib.Tactic |
| 9 | + |
| 10 | +/-! |
| 11 | +# Language (additional definitions and theorems) |
| 12 | +
|
| 13 | +This file contains additional definitions and theorems about `Language` |
| 14 | +as defined and developed in `Mathlib.Computability.Language`. |
| 15 | +-/ |
| 16 | + |
| 17 | +namespace Language |
| 18 | + |
| 19 | +open Set List |
| 20 | +open scoped Computability |
| 21 | + |
| 22 | +variable {α : Type _} {l : Language α} |
| 23 | + |
| 24 | +-- This section will be removed once the following PR gets into mathlib: |
| 25 | +-- https://github.com/leanprover-community/mathlib4/pull/30913 |
| 26 | +section from_mathlib4_30913 |
| 27 | + |
| 28 | +/-- The subtraction of two languages is their difference. -/ |
| 29 | +instance : Sub (Language α) where |
| 30 | + sub := SDiff.sdiff |
| 31 | + |
| 32 | +theorem sub_def (l m : Language α) : l - m = (l \ m : Set (List α)) := |
| 33 | + rfl |
| 34 | + |
| 35 | +theorem mem_sub (l m : Language α) (x : List α) : x ∈ l - m ↔ x ∈ l ∧ x ∉ m := |
| 36 | + Iff.rfl |
| 37 | + |
| 38 | +instance : OrderedSub (Language α) where |
| 39 | + tsub_le_iff_right _ _ _ := sdiff_le_iff' |
| 40 | + |
| 41 | +end from_mathlib4_30913 |
| 42 | + |
| 43 | +theorem le_one_iff_eq : l ≤ 1 ↔ l = 0 ∨ l = 1 := |
| 44 | + subset_singleton_iff_eq |
| 45 | + |
| 46 | +@[simp, scoped grind =] |
| 47 | +theorem mem_sub_one (x : List α) : x ∈ (l - 1) ↔ x ∈ l ∧ x ≠ [] := |
| 48 | + Iff.rfl |
| 49 | + |
| 50 | +@[simp, scoped grind =] |
| 51 | +theorem reverse_sub (l m : Language α) : (l - m).reverse = l.reverse - m.reverse := by |
| 52 | + ext x ; simp [mem_sub] |
| 53 | + |
| 54 | +@[scoped grind =] |
| 55 | +theorem sub_one_mul : (l - 1) * l = l * l - 1 := by |
| 56 | + ext x ; constructor |
| 57 | + · rintro ⟨u, h_u, v, h_v, rfl⟩ |
| 58 | + rw [mem_sub, mem_one] at h_u ⊢ |
| 59 | + constructor |
| 60 | + · refine ⟨u, ?_, v, ?_⟩ <;> grind |
| 61 | + · grind [append_eq_nil_iff] |
| 62 | + · rintro ⟨⟨u, h_u, v, h_v, rfl⟩, h_x⟩ |
| 63 | + rcases eq_or_ne u [] with (rfl | h_u') |
| 64 | + · refine ⟨v, ?_, [], ?_⟩ <;> grind [mem_sub, mem_one] |
| 65 | + · refine ⟨u, ?_, v, ?_⟩ <;> grind |
| 66 | + |
| 67 | +@[scoped grind =] |
| 68 | +theorem mul_sub_one : l * (l - 1) = l * l - 1 := by |
| 69 | + calc |
| 70 | + _ = (l * (l - 1)).reverse.reverse := by rw [reverse_reverse] |
| 71 | + _ = ((l.reverse - 1) * l.reverse).reverse := by rw [reverse_mul, reverse_sub, reverse_one] |
| 72 | + _ = (l.reverse * l.reverse - 1).reverse := by rw [sub_one_mul] |
| 73 | + _ = _ := by rw [reverse_sub, reverse_one, reverse_mul, reverse_reverse] |
| 74 | + |
| 75 | +@[scoped grind =] |
| 76 | +theorem kstar_sub_one : l∗ - 1 = (l - 1) * l∗ := by |
| 77 | + ext x ; constructor |
| 78 | + · rintro ⟨h1, h2⟩ |
| 79 | + obtain ⟨xl, rfl, h_xl⟩ := kstar_def_nonempty l ▸ h1 |
| 80 | + have h3 : ¬ xl = [] := by grind [one_def] |
| 81 | + obtain ⟨x, xl', h_xl'⟩ := exists_cons_of_ne_nil h3 |
| 82 | + have := h_xl x |
| 83 | + refine ⟨x, ?_, xl'.flatten, ?_, ?_⟩ <;> grind [join_mem_kstar] |
| 84 | + · rintro ⟨y, ⟨h_y, h_1⟩, z, h_z, rfl⟩ |
| 85 | + refine ⟨?_, ?_⟩ |
| 86 | + · apply (show l * l∗ ≤ l∗ by exact mul_kstar_le_kstar) |
| 87 | + exact ⟨y, h_y, z, h_z, rfl⟩ |
| 88 | + · grind [one_def, append_eq_nil_iff] |
| 89 | + |
| 90 | +end Language |
0 commit comments