
FleCSPH Wiki

August 31, 2020

This document contains static version of FleCSPH wiki page instruction for building FleCSPH and running several
example tests. Full information about this wiki page can be found in https://github.com/laristra/flecsph/wiki This
document is authorized for unlimited public release under LA-UR-20-26581

1 Building FleCSPH with Spack

FleCSPH can now be installed as a Spack package:

• Download spack at: github.com/spack/spack

• Follow installation instructions

• Use the following command to install module support for spack and load the module. The second line can be
added in your bash profile.sh

spack install lmod

. \$(spack location -i lmod)/lmod/lmod/init/bash

• Run:

spack install flecsph

This will build all the dependencies, compile and install FleCSPH. In order to use FleCSPH executables simply
run:

spack load flecsph

You will then have access to the generators and the drivers: - sodtube {1-2-3}d generator, sedov {2-3}d generator. . .
- hydro {1-2-3}d, newtonian 3d. . .
You can access to pre-configured parameter files and examples by downloading this repository:

git clone --recursive git@github.com:laristra/flecsph.git

cd flecsph

Sample parameter files and the intial data can be found in the data subdirectory.

1.1 Using Spack in the development workflow

If you have downloaded FleCSPH from github and working on a development branch, it is very convenient to use
spack to automatically handle the dependencies:

1. Follow the steps above to install FleCSPH with spack. This will ensure that all the dependencies are satisfied.

2. To inspect the dependencies:

spack module tcl loads --dependencies flecsph@refactor

i

If this command returns empty, use spack bootstrap for tcl.

3. Load the FleCSPH dependencies installed by spack into the bash environment:

source <(spack module tcl loads --dependencies flecsph)

Unload FleCSPH itself as you will be using your own custom built version:

module unload $(spack module tcl find flecsph)

Inspect your module environment to make sure dependencies have been loaded:

module list

4. You can now build your development version with cmake as described below, skipping all the dependencies.
cmake should find all the dependencies from what you loaded with spack:

mkdir build; cd build

cmake .. \

-DCMAKE_BUILD_TYPE=debug \

-DENABLE_UNIT_TESTS=ON \

-DENABLE_DEBUG=OFF \

-DLOG_STRIP_LEVEL=1

2 Building FleCSPH manually

Below we assume that FleCSPH is installed in FLECSPH root directory ${FLECSPH ROOT}.

2.1 Suggested directory structure

We recommend to use an isolated installation of FleCSPH and FleCSI, such that the software and all the depen-
dencies in a separate directory, with the following directory structure:

${FLECSPH_ROOT}

flecsi

build

flecsph

build

third-party-libraries

local

bin

include

lib

lib64

share

All the build happens in build subdirectories, and compiled dependencies are installed in local subdirectory. Make
sure to set your CMAKE prefix to this location:

% export CMAKE_PREFIX_PATH=${FLECSPH_ROOT}/local

ii

2.2 Prerequisites

You will need the following tools:

• C++17 - capable compiler, such as gcc version >= 7;

• git version > 2.14;

• MPI libraries;

• cmake version >= 3.15;

• boost library version > 1.59;

• Python version >= 3.6.

• HDF5 compiled with parallel flag version > 1.8

• GSL library

2.3 FleCSI

Clone FleCSI repo at the stable/flecsph branch. Checkout submodules recursively, then configure as below:

export CMAKE_PREFIX_PATH=${FLECSPH_ROOT}/local

cd ${FLECSPH_ROOT}

git clone --recursive git@github.com:laristra/flecsi.git

cd flecsi

git checkout stable/flecsph

git submodule update --recursive

mkdir build ; cd build

cmake .. \

-DENABLE_OPENMP=OFF \

-DCXX_CONFORMANCE_STANDARD=c++17 \

-DENABLE_METIS=ON \

-DENABLE_PARMETIS=ON \

-DENABLE_COLORING=ON \

-DENABLE_DEVEL_TARGETS=ON \

-DENABLE_LOG=ON \

-DFLECSI_RUNTIME_MODEL=mpi

In this configuration, FleCSI is installed with the MPI backend.
Build as a final step:

% make -j

2.4 FleCSPH

Clone FleCSPH git repo:

cd ${FLECSPH_ROOT}

git clone --recursive git@github.com:laristra/flecsph.git

2.4.1 Building FleCSPH

Configure and build commands:

in ${FLECSPH_ROOT}/build:

export CMAKE_PREFIX_PATH=${FLECSPH_ROOT}/local

cmake .. \

-DCMAKE_BUILD_TYPE=debug \

-DENABLE_UNIT_TESTS=ON \

-DENABLE_DEBUG=OFF \

iii

-DLOG_STRIP_LEVEL=1

make -j

make install

3 Several Examples you may want to try

We provide several example tests to understand code structure, how you can run some problems. These examples
will demonstrate our functionalities for hydrodynamics and gravity computation. Below link will show detailed
descriptions on each example problems. To perform these examples, you must successfully build FleCSPH first.

3.1 1D Sod Shock Tube Test

3.1.1 Problem description

The Sod shock tubes provide standard tests with a classical Riemann problem for accuracy in computational fluid
dynamics.

3.1.2 Generate initial data

First, we need to generate initial data. In this example, we use the standard test 1 and 10,000 particles. Copy the
following parameter settings into a parameter file, e.g. sod test1 n10000.par:

Sodtube test #1 for 10000 particles in linear dimension

initial data

initial_data_prefix = "sod_test1_n10000"

lattice_nx = 10000 # particle lattice linear dimension

poly_gamma = 1.4 # polytropic index

sodtest_num = 1 # which test to generate (1..5)

equal_mass = yes # determines whether equal mass particles are used or equal separation

sph_eta = 1.5

lattice_type = 0 # only matters for dimensions > 1; in 3D: 0=rectangular, 1=hcp, 2=fcc lattice

domain_type = 0 # 0:cube, 1:sphere

box_length = 6.0

evolution

sph_kernel = "Wendland C6"

initial_dt = 1e-12

sph_variable_h = yes

adaptive_timestep = yes

timestep_cfl_factor = 0.75

#thermokinetic_formulation = no

final_iteration = 5000

out_screen_every = 1

out_scalar_every = 1

out_h5data_every = 10

out_diagnostic_every = 1

output_h5data_prefix = "ev_sod_test1_n10000"

Generate initial data using the 1D generator:

mpirun -np 1 ./sodtube_1d_generator sod_test1_n10000.par

The file sodtube 1d generator can be found in your build directory at
${PATH TO FLECSPH}/flecsph/build/app/id generators, or in the install directory, ${CMAKE PREFIX PATH}/bin.
The command above will produce a particle file sod test1 n10000.h5part.

iv

3.1.3 Run the test

Use the following command to produce hydrodynamic evolution:

mpirun -np 1 ./hydro_1d sod_test1_n10000.par

This will produce evolution files: ev sod test1 n10000.h5part contain particle data, and scalar reductions.dat

contain various scalar reductions: total mass, energy, internal energy, total momentum etc.

Plotting the data There are several different ways to plot the results. We encourage user to use whatever user’s
convenient way but please contact flecsph-support@lanl.gov if you would like to get plotting script from us.

3.2 Stellar Oscillation

3.2.1 Problem description

As a standard test of the numerical method for simulating self-gravitating fluids, we present the evolution of a
stable isolated star in equilibrium. This test checks consistency and conservation properties for the coupled system
of hydrodynamics and gravity.

3.2.2 Generate initial data

For initial data, we first solve the Lane-Emden equation. This results in a white dwarf with mass 0.2 solar mass
and radius 4790 km. We provide radial density profile here. If you are interested in solving yourself, please check
wdID directoy in tools/starID tools directory.
Using this profile, we set up particle configuration on a perturbed icosahedral lattice. To do that, create initial n32.par

using below parameters

Sperical particle distribution: initial data parameter file

#

initial_data_prefix = "wd_initial_n32"

geometry: spherical domain with radius R = 1

domain_type = 1 # 0:box, 1:sphere

density_profile = "from file"

input_density_file = "density_profile_nr8000.dat"

sphere_radius = 4.79283e+08

icosahedra lattice with small perturbations

lattice_nx = 32 # particle lattice dimension

lattice_type = 3 # 0:rectangular, 1:hcp, 2:fcc, 3:icosahedral

lattice_perturbation_amplitude = 0.09 # in units of sm. length

equation of state type and parameters

eos_type = "polytropic"

#poly_gamma = 1.66667 # polytropic index

poly_gamma = 0.99

density and pressure for relaxation stage

rho_initial = 5.2e+6

#pressure_initial = 1.56085e+23

pressure_initial = 1e+28

since we only need spherical distribution of particles,

set Sedov energy to zero

sedov_blast_energy = 0.0

v

wd_single_files/density_profile_nr8000.dat

use a good kernel

sph_kernel = "Wendland C6"

sph_eta = 1.5

You can also directly get this parameter file here. Using this, we can generate initial data via below command

mpirun -np 1 ./sedov_3d_generator initial_n32.par

Note that you can find sedov 3d generator in your ${PATH TO FLECSPH}/flecsph/build/app/id generators

or ${CMAKE PRE PATH}/bin based on your compilation procedure. After successful generation, you will have
wd initial n32.h5part file.

3.2.3 Particle relaxation and generate self-consistent white dwarf

After generating initial configuration, we relax this particle configuration. First, create relaxation n32.par using
below parameters

Sperical particle distribution: relaxation phase

Use ./hydro_3d <this_file>.par to evolve into relaxed state

initial data

initial_data_prefix = "wd_initial_n32"

initial_iteration = 0

geometry

domain_type = 1 # 0:box, 1:sphere

external_force_type = "spherical density support"

density_profile = "from file"

input_density_file = "density_profile_nr8000.dat"

sphere_radius = 4.79283e+08

density and pressure for relaxation stage

rho_initial = 5.2e+6

##pressure_initial = 1.56085e+23 # actual pressure in WD

pressure_initial = 1e+28 # artificially increased for faster relaxation

evolution

final_iteration = 1000

relaxation_steps = 1000

relaxation_beta = 1e2

relaxation_gamma = 0.0

initial_dt = 1.e-9

timestep_cfl_factor = 0.5

out_screen_every = 1

out_scalar_every = 1

out_diagnostic_every = 10

out_h5data_every = 100

output_h5data_prefix = "wd_relaxation_n32"

thermokinetic_formulation = yes

adaptive_timestep = yes

sph_variable_h = yes

vi

wd_single_files/initial_n32.par

evolve_internal_energy = no

equation of state type and parameters

eos_type = "polytropic"

##poly_gamma = 1.66667 # actual polytropic index for WD

poly_gamma = 0.99 # artificially lowered for more uniform relaxation

sph_kernel = "Wendland C6"

sph_eta = 1.5

or get it from here. After that, using below command for relaxation step

mpirun -np 1 ./hydro_3d relaxation_n32.par

Note that you can find hydro 3d in your ${PATH TO FLECSPH}/flecsph/build/app/drivers or ${CMAKE PRE PATH}/bin
based on your compilation procedure. After successful generation, you will have wd relaxation n32.h5part file.
After that, we modify the file produced in previous step by overwriting particles pressure and internal energies to
correspond self-consistent white dwarf model. To do that, create modify n32.h5part using below parameters

#

Overwrite quantities before relaxation step

Usage: ./sedov_3d_generator <this_file>.par

WARNING: overwrites initial_data_prefix !!

#

modify_initial_data = yes

initial_data_prefix = "wd_modified_n32"

initial_iteration = 1000

geometry: spherical domain with radius R = 1

domain_type = 1 # 0:box, 1:sphere

sphere_radius = 4.79283e+08

equation of state type and parameters

eos_type = "polytropic"

poly_gamma = 1.66667 # polytropic index

reset thermodynamical quantities

density_profile = "from file"

input_density_file = "density_profile_nr8000.dat"

external_force_type = "spherical density support"

rho_initial = 5.2e+6

pressure_initial = 1.56085e+23

sedov_blast_energy = 0.0

sedov_blast_radius = 0.1 # whatever

good kernel

sph_kernel = "Wendland C6"

sph_eta = 1.5

or you can get it from here. Then, follow the below commands

cp wd_relaxation_n32.h5part wd_modified_n32.h5part

mpirun -np 1 ./sedov_3d_generator modify_n32.par

This will overwrite wd modified n32.h5part

vii

wd_single_files/relaxation_n32.par
wd_single_files/modify_n32.par

3.2.4 Run evolution

Finally, we evolve white dwarf data from previous steps with self-gravity. To do that, create evolve n32.par using
below parameters

#

Test of Gravity

#

initial data

initial_data_prefix = "wd_modified_n32"

eos_type = "polytropic"

poly_gamma = 1.66667 # polytropic index

rho_initial = 5.2e+6

pressure_initial = 1.56085e+23

sphere_radius = 4.79283e+08

domain_type = 1 # 0:box, 1:sphere

gravity related parameters:

enable_fmm = yes

fmm_macangle = 0.3

#fmm_max_cell_mass = 0.1

evolution parameters:

sph_kernel = "Wendland C6"

sph_eta = 1.6

initial_dt = 1.e-12

timestep_cfl_factor = 0.5

final_iteration = 10000

out_screen_every = 1

out_scalar_every = 1

out_h5data_every = 100

out_diagnostic_every = 10

output_h5data_prefix = "wd_evolution_n32"

thermokinetic_formulation = yes

adaptive_timestep = yes

sph_variable_h = yes

evolve_internal_energy = yes

relaxation_repulsion_gamma = 0.0

gravitational_constant = 6.67383e-8

or you can get it from here. Then, follow the below commands

mpirun -np 1 ./newtonian_3d evolve_n32.par

Note that you can find newtonian 3d in your ${PATH TO FLECSPH}/flecsph/build/app/drivers or ${CMAKE PRE PATH}/bin
based on your compilation procedure. After successful generation, you will have wd evolution n32.h5part file.

3.2.5 Analyze the result

The purpose of this test is checking conservation property for coupled system of hydrodynamics and gravity. For
gravity computation, we use fast multipole method (FMM). We compare conservation of energy, linear momentum,
and angular momentum, computed using the FMM approximation, and using exact N-body computation.

viii

wd_single_files/evolve_n32.par

You can obtain both FMM and exact N-body results by changing fmm macangle parameter in evolve n32.par.
If you set fmm macangle=0.0 this will provide exact N-body result. If you set fmm macangle > 0.0, you will use
FMM approximation to compute gravitational force.
After successful evolution simulation, you will get scalar reductions.dat file that contains information of energy,
linear and angular momentum during iterations. You can compare FMM results with exact N-body results by
varying fmm macangle.
There are several different ways to plot the results. We encourage user to use whatever user’s convenient way but
please contact flecsph-support@lanl.gov if you would like to get plotting script and example result data from us.

3.3 Binary White Dwarf Merger

3.3.1 Problem description

The merging of compact objects, such as neutron stars (NSs) and white dwarfs (WDs), is an interesting phenomenon
for study in astrophysics. Here, we present a binary and example of a binary white dwarf (BWD) simulation using
FleCSPH.

3.3.2 Generate initial data

To set up the system, we begin by initializing two individual stars. For this example, we consider 0.45 and 0.75 solar
mass WDs. Provide radial profiles for the WDs with the following normalized columns: r/Rtot, rhoRtotˆ3/Mtot,
m/Mtot, and (drho/dr)Rtotˆ4/Mtot. Create input star1.par using below parameters:

#

White Dwarf

Initialization

Use ./sedov_3d_generator <this_file>.par

#

initial_data_prefix = "wd_0.45_initial"

geometry:

domain_type = 1 # 0:box, 1:sphere

sphere_radius = 9.97195636003897e+08

density_profile = "from file"

input_density_file = "WD_M0.45_prof.dat"

icosahedra lattice with small perturbations

lattice_nx = 59 # particle lattice dimension

lattice_type = 4 # 0:rectangular, 1:hcp, 2:fcc, 3:icosahedral

lattice_perturbation_amplitude = 0.10 # in units of sm. length

equation of state type and parameters

eos_type = "white dwarf"

density and pressure for relaxation stage

rho_initial = 1.55526386469527e+06

pressure_initial = 5.07690366495309e+22

since we only need spherical distribution of particles,

set Sedov energy to zero

sedov_blast_energy = 0.0

use a good kernel

sph_kernel = "Wendland C6"

sph_eta = 1.6

Using this, we can generate initial data via below command

mpirun -np 1 ./sedov_3d_generator input_star1.par

Repeat for the second star configuration.

ix

3.3.3 Relax with WVT driver

Run the WVT relaxation. Select either Diehl or Arth method in the input file. The number of iterations is currently
set to 4000. Create input star1.par using below parameters:

#

White Dwarf Relaxation

via WVT

Use ./wvt_3d <this file>

#

initial data

initial_data_prefix = "wd_0.45_initial"

initial_iteration = 0

domain_type = 1 # 0:box, 1:sphere

sphere_radius = 9.97195636003897e+08

rho_initial = 1.55526386469527e+06

density_profile = "from file"

input_density_file = "WD_M0.45_prof.dat"

evolution

final_iteration = 4000

adaptive_timestep = false

output

out_screen_every = 1

out_scalar_every = 10

out_h5data_every = 20

output_h5data_prefix = "wvt_wd_relaxed_m0.45"

eos

eos_type = "no eos"

sph

sph_kernel = "Wendland C6"

sph_eta = 1.6

sph_variable_h = true

wvt

wvt_method = "diehl" # "arth" or "diehl"

wvt_boundary = "reflective" # "reflective" or "frozen"

wvt_mu = 1.e-3 # small fraction of smoothing length

wvt_ngb = 60 # number of desired neighbors

wvt_convergence_check = true

wvt_convergence_point = 0.1

wvt_h_ngb = true

wvt_cool_down = 0

wvt_radius = 9.97195636003897e+08. # if problems occur at the edge, reduce to less than total star radius

Using this, we can generate initial data with the following command

mpirun -np <#> ./wvt_3d relaxation_wd_wvt.par

You can check the evolution of the particles with any data analysis and visualization application, e.g., ParaView.
However, beware that the density that you will see is not accurate. It is only provided for rough cross-check. For
an accurate density.
(OPTIONAL) extract last iteration from wvt wd relaxed m0.45.h5part, with the following requirements: ex-
tract h5part iteration.py (in flecsph/tools) and wvt wd relaxed m0.45.h5part by running

python extract_h5part_iteration.py -f wvt_star_relaxed.h5part -l

Finally, check that the star is stable under it’s own gravity by running

x

mpirun -np <#> ./newtonian_3d evolution_wd.par

with the following parameter file, evolution.par:

#

White Dwarf

Evolution with FMM

run by ./newtonian_3d <this_file>

#

initial data

initial_data_prefix = "wd_relaxed_m0.45_<########>"

initial_iteration = 0

equation of state

eos_type = "white dwarf"

sph kernel

sph_kernel = "Wendland C6"

sph_eta = 1.2

sph_variable_h = yes

evolution parameters

final_iteration = 200

initial_dt = 2.e-14

timestep_cfl_factor = 0.5

adaptive_timestep = yes

thermokinetic_formulation = FALSE

output

out_screen_every = 10

out_scalar_every = 10

out_h5data_every = 20

output_h5data_prefix = "wd_relaxed_m0.45_ev"

gravity related parameters:

enable_fmm = yes

fmm_macangle = 0.8

gravitational_constant = 6.67408e-8

If stable, you can optionally extract the last

3.3.4 Run with external Roche potential

In order to accurately reflect orbital effects on the star’s configuration, run the single star under gravity with the
following parameter file, eforce evolution.par:

#

White Dwarf

Evolution with FMM

run by ./newtonian_3d <this_file>

#

initial data

initial_data_prefix = "wd_relaxed_m0.45_ev"

initial_iteration = 0

equation of state

eos_type = "white dwarf"

sph kernel

sph_kernel = "Wendland C6"

sph_eta = 1.2

sph_variable_h = yes

xi

evolution parameters

final_iteration = 10000

initial_dt = 2.e-14

timestep_cfl_factor = 0.75

adaptive_timestep = yes

thermokinetic_formulation = FALSE

output

out_screen_every = 20

out_scalar_every = 20

out_h5data_every = 100

output_h5data_prefix = "wd_relaxed_m0.45_roche"

gravity related parameters:

enable_fmm = yes

fmm_macangle = 0.8

gravitational_constant = 6.67408e-8

eforce parameters:

external_force_type = "orbit"

mass_neutron_star = 1.4913525e33 # companion star

mass_white_dwarf = 8.9479575e32 # primary star

orbital_separation = 3.064070749e9 # choose orbital separation

Run this with the following command:

mpirun -np <#> ./newtonian_3d eforce_evolution.par

Once you confirm that the star has relaxed into its Roche potential, you can extract the final iteration as before.

3.3.5 Create binary file

Run the following python script to place these stars into a binary. Requirements: make binary system.py (in
flecsph/tools), star 1.h5part, star 2.h5part.

python make_binary_system.py -f <star1.h5part> <star1.h5part> -a <orbital separation in cm>

make binary system.py can be found in tools directory. After successful generation, you will have binary.h5aprt

xii

	Building FleCSPH with Spack
	Using Spack in the development workflow

	Building FleCSPH manually
	Suggested directory structure
	Prerequisites
	FleCSI
	FleCSPH
	Building FleCSPH

	Several Examples you may want to try
	1D Sod Shock Tube Test
	Problem description
	Generate initial data
	Run the test

	Stellar Oscillation
	Problem description
	Generate initial data
	Particle relaxation and generate self-consistent white dwarf
	Run evolution
	Analyze the result

	Binary White Dwarf Merger
	Problem description
	Generate initial data
	Relax with WVT driver
	Run with external Roche potential
	Create binary file

