|
5 | 5 | from pytest_mock import MockerFixture |
6 | 6 |
|
7 | 7 | from langchain_perplexity import ChatPerplexity |
| 8 | +from langchain_perplexity.chat_models import _create_usage_metadata |
8 | 9 |
|
9 | 10 |
|
10 | 11 | def test_perplexity_model_name_param() -> None: |
@@ -295,3 +296,230 @@ def test_perplexity_stream_includes_citations_and_search_results( |
295 | 296 | } |
296 | 297 |
|
297 | 298 | patcher.assert_called_once() |
| 299 | + |
| 300 | + |
| 301 | +def test_create_usage_metadata_basic() -> None: |
| 302 | + """Test _create_usage_metadata with basic token counts.""" |
| 303 | + token_usage = { |
| 304 | + "prompt_tokens": 10, |
| 305 | + "completion_tokens": 20, |
| 306 | + "total_tokens": 30, |
| 307 | + } |
| 308 | + |
| 309 | + usage_metadata = _create_usage_metadata(token_usage) |
| 310 | + |
| 311 | + assert usage_metadata["input_tokens"] == 10 |
| 312 | + assert usage_metadata["output_tokens"] == 20 |
| 313 | + assert usage_metadata["total_tokens"] == 30 |
| 314 | + assert usage_metadata["output_token_details"]["reasoning"] == 0 |
| 315 | + assert usage_metadata["output_token_details"]["citation_tokens"] == 0 # type: ignore[typeddict-item] |
| 316 | + |
| 317 | + |
| 318 | +def test_create_usage_metadata_with_reasoning_tokens() -> None: |
| 319 | + """Test _create_usage_metadata with reasoning tokens.""" |
| 320 | + token_usage = { |
| 321 | + "prompt_tokens": 50, |
| 322 | + "completion_tokens": 100, |
| 323 | + "total_tokens": 150, |
| 324 | + "reasoning_tokens": 25, |
| 325 | + } |
| 326 | + |
| 327 | + usage_metadata = _create_usage_metadata(token_usage) |
| 328 | + |
| 329 | + assert usage_metadata["input_tokens"] == 50 |
| 330 | + assert usage_metadata["output_tokens"] == 100 |
| 331 | + assert usage_metadata["total_tokens"] == 150 |
| 332 | + assert usage_metadata["output_token_details"]["reasoning"] == 25 |
| 333 | + assert usage_metadata["output_token_details"]["citation_tokens"] == 0 # type: ignore[typeddict-item] |
| 334 | + |
| 335 | + |
| 336 | +def test_create_usage_metadata_with_citation_tokens() -> None: |
| 337 | + """Test _create_usage_metadata with citation tokens.""" |
| 338 | + token_usage = { |
| 339 | + "prompt_tokens": 100, |
| 340 | + "completion_tokens": 200, |
| 341 | + "total_tokens": 300, |
| 342 | + "citation_tokens": 15, |
| 343 | + } |
| 344 | + |
| 345 | + usage_metadata = _create_usage_metadata(token_usage) |
| 346 | + |
| 347 | + assert usage_metadata["input_tokens"] == 100 |
| 348 | + assert usage_metadata["output_tokens"] == 200 |
| 349 | + assert usage_metadata["total_tokens"] == 300 |
| 350 | + assert usage_metadata["output_token_details"]["reasoning"] == 0 |
| 351 | + assert usage_metadata["output_token_details"]["citation_tokens"] == 15 # type: ignore[typeddict-item] |
| 352 | + |
| 353 | + |
| 354 | +def test_create_usage_metadata_with_all_token_types() -> None: |
| 355 | + """Test _create_usage_metadata with all token types. |
| 356 | +
|
| 357 | + Tests reasoning tokens and citation tokens together. |
| 358 | + """ |
| 359 | + token_usage = { |
| 360 | + "prompt_tokens": 75, |
| 361 | + "completion_tokens": 150, |
| 362 | + "total_tokens": 225, |
| 363 | + "reasoning_tokens": 30, |
| 364 | + "citation_tokens": 20, |
| 365 | + } |
| 366 | + |
| 367 | + usage_metadata = _create_usage_metadata(token_usage) |
| 368 | + |
| 369 | + assert usage_metadata["input_tokens"] == 75 |
| 370 | + assert usage_metadata["output_tokens"] == 150 |
| 371 | + assert usage_metadata["total_tokens"] == 225 |
| 372 | + assert usage_metadata["output_token_details"]["reasoning"] == 30 |
| 373 | + assert usage_metadata["output_token_details"]["citation_tokens"] == 20 # type: ignore[typeddict-item] |
| 374 | + |
| 375 | + |
| 376 | +def test_create_usage_metadata_missing_optional_fields() -> None: |
| 377 | + """Test _create_usage_metadata with missing optional fields defaults to 0.""" |
| 378 | + token_usage = { |
| 379 | + "prompt_tokens": 25, |
| 380 | + "completion_tokens": 50, |
| 381 | + } |
| 382 | + |
| 383 | + usage_metadata = _create_usage_metadata(token_usage) |
| 384 | + |
| 385 | + assert usage_metadata["input_tokens"] == 25 |
| 386 | + assert usage_metadata["output_tokens"] == 50 |
| 387 | + # Total tokens should be calculated if not provided |
| 388 | + assert usage_metadata["total_tokens"] == 75 |
| 389 | + assert usage_metadata["output_token_details"]["reasoning"] == 0 |
| 390 | + assert usage_metadata["output_token_details"]["citation_tokens"] == 0 # type: ignore[typeddict-item] |
| 391 | + |
| 392 | + |
| 393 | +def test_create_usage_metadata_empty_dict() -> None: |
| 394 | + """Test _create_usage_metadata with empty token usage dict.""" |
| 395 | + token_usage: dict = {} |
| 396 | + |
| 397 | + usage_metadata = _create_usage_metadata(token_usage) |
| 398 | + |
| 399 | + assert usage_metadata["input_tokens"] == 0 |
| 400 | + assert usage_metadata["output_tokens"] == 0 |
| 401 | + assert usage_metadata["total_tokens"] == 0 |
| 402 | + assert usage_metadata["output_token_details"]["reasoning"] == 0 |
| 403 | + assert usage_metadata["output_token_details"]["citation_tokens"] == 0 # type: ignore[typeddict-item] |
| 404 | + |
| 405 | + |
| 406 | +def test_perplexity_invoke_includes_num_search_queries(mocker: MockerFixture) -> None: |
| 407 | + """Test that invoke includes num_search_queries in response_metadata.""" |
| 408 | + llm = ChatPerplexity(model="test", timeout=30, verbose=True) |
| 409 | + |
| 410 | + mock_usage = MagicMock() |
| 411 | + mock_usage.model_dump.return_value = { |
| 412 | + "prompt_tokens": 10, |
| 413 | + "completion_tokens": 20, |
| 414 | + "total_tokens": 30, |
| 415 | + "num_search_queries": 3, |
| 416 | + } |
| 417 | + |
| 418 | + mock_response = MagicMock() |
| 419 | + mock_response.choices = [ |
| 420 | + MagicMock( |
| 421 | + message=MagicMock( |
| 422 | + content="Test response", |
| 423 | + tool_calls=None, |
| 424 | + ), |
| 425 | + finish_reason="stop", |
| 426 | + ) |
| 427 | + ] |
| 428 | + mock_response.model = "test-model" |
| 429 | + mock_response.usage = mock_usage |
| 430 | + |
| 431 | + patcher = mocker.patch.object( |
| 432 | + llm.client.chat.completions, "create", return_value=mock_response |
| 433 | + ) |
| 434 | + |
| 435 | + result = llm.invoke("Test query") |
| 436 | + |
| 437 | + assert result.response_metadata["num_search_queries"] == 3 |
| 438 | + assert result.response_metadata["model_name"] == "test-model" |
| 439 | + patcher.assert_called_once() |
| 440 | + |
| 441 | + |
| 442 | +def test_perplexity_invoke_without_num_search_queries(mocker: MockerFixture) -> None: |
| 443 | + """Test that invoke works when num_search_queries is not provided.""" |
| 444 | + llm = ChatPerplexity(model="test", timeout=30, verbose=True) |
| 445 | + |
| 446 | + mock_usage = MagicMock() |
| 447 | + mock_usage.model_dump.return_value = { |
| 448 | + "prompt_tokens": 10, |
| 449 | + "completion_tokens": 20, |
| 450 | + "total_tokens": 30, |
| 451 | + } |
| 452 | + |
| 453 | + mock_response = MagicMock() |
| 454 | + mock_response.choices = [ |
| 455 | + MagicMock( |
| 456 | + message=MagicMock( |
| 457 | + content="Test response", |
| 458 | + tool_calls=None, |
| 459 | + ), |
| 460 | + finish_reason="stop", |
| 461 | + ) |
| 462 | + ] |
| 463 | + mock_response.model = "test-model" |
| 464 | + mock_response.usage = mock_usage |
| 465 | + |
| 466 | + patcher = mocker.patch.object( |
| 467 | + llm.client.chat.completions, "create", return_value=mock_response |
| 468 | + ) |
| 469 | + |
| 470 | + result = llm.invoke("Test query") |
| 471 | + |
| 472 | + assert "num_search_queries" not in result.response_metadata |
| 473 | + assert result.response_metadata["model_name"] == "test-model" |
| 474 | + patcher.assert_called_once() |
| 475 | + |
| 476 | + |
| 477 | +def test_perplexity_stream_includes_num_search_queries(mocker: MockerFixture) -> None: |
| 478 | + """Test that stream properly handles num_search_queries in usage data.""" |
| 479 | + llm = ChatPerplexity(model="test", timeout=30, verbose=True) |
| 480 | + |
| 481 | + mock_chunk_0 = { |
| 482 | + "choices": [{"delta": {"content": "Hello "}, "finish_reason": None}], |
| 483 | + } |
| 484 | + mock_chunk_1 = { |
| 485 | + "choices": [{"delta": {"content": "world"}, "finish_reason": None}], |
| 486 | + } |
| 487 | + mock_chunk_2 = { |
| 488 | + "choices": [{"delta": {}, "finish_reason": "stop"}], |
| 489 | + "usage": { |
| 490 | + "prompt_tokens": 5, |
| 491 | + "completion_tokens": 10, |
| 492 | + "total_tokens": 15, |
| 493 | + "num_search_queries": 2, |
| 494 | + "reasoning_tokens": 1, |
| 495 | + "citation_tokens": 3, |
| 496 | + }, |
| 497 | + } |
| 498 | + mock_chunks: list[dict[str, Any]] = [mock_chunk_0, mock_chunk_1, mock_chunk_2] |
| 499 | + mock_stream = MagicMock() |
| 500 | + mock_stream.__iter__.return_value = mock_chunks |
| 501 | + |
| 502 | + patcher = mocker.patch.object( |
| 503 | + llm.client.chat.completions, "create", return_value=mock_stream |
| 504 | + ) |
| 505 | + |
| 506 | + chunks_list = list(llm.stream("Test query")) |
| 507 | + |
| 508 | + # Find the chunk with usage metadata |
| 509 | + usage_chunk = None |
| 510 | + for chunk in chunks_list: |
| 511 | + if chunk.usage_metadata: |
| 512 | + usage_chunk = chunk |
| 513 | + break |
| 514 | + |
| 515 | + # Verify usage metadata is properly set |
| 516 | + assert usage_chunk is not None |
| 517 | + assert usage_chunk.usage_metadata is not None |
| 518 | + assert usage_chunk.usage_metadata["input_tokens"] == 5 |
| 519 | + assert usage_chunk.usage_metadata["output_tokens"] == 10 |
| 520 | + assert usage_chunk.usage_metadata["total_tokens"] == 15 |
| 521 | + # Verify reasoning and citation tokens are included |
| 522 | + assert usage_chunk.usage_metadata["output_token_details"]["reasoning"] == 1 |
| 523 | + assert usage_chunk.usage_metadata["output_token_details"]["citation_tokens"] == 3 # type: ignore[typeddict-item] |
| 524 | + |
| 525 | + patcher.assert_called_once() |
0 commit comments