-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathpoint.rs
246 lines (213 loc) · 8.15 KB
/
point.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
use crate::elliptic_curve::traits::IsEllipticCurve;
use crate::field::element::FieldElement;
use core::fmt::Debug;
/// Represents an elliptic curve point using the projective short Weierstrass form:
/// y^2 * z = x^3 + a * x * z^2 + b * z^3,
/// where `x`, `y` and `z` variables are field elements.
#[derive(Debug, Clone)]
pub struct ProjectivePoint<E: IsEllipticCurve> {
pub value: [FieldElement<E::BaseField>; 3],
}
impl<E: IsEllipticCurve> ProjectivePoint<E> {
/// Creates an elliptic curve point giving the projective [x: y: z] coordinates.
pub const fn new(value: [FieldElement<E::BaseField>; 3]) -> Self {
Self { value }
}
/// Returns the `x` coordinate of the point.
pub fn x(&self) -> &FieldElement<E::BaseField> {
&self.value[0]
}
/// Returns the `y` coordinate of the point.
pub fn y(&self) -> &FieldElement<E::BaseField> {
&self.value[1]
}
/// Returns the `z` coordinate of the point.
pub fn z(&self) -> &FieldElement<E::BaseField> {
&self.value[2]
}
/// Returns a tuple [x, y, z] with the coordinates of the point.
pub fn coordinates(&self) -> &[FieldElement<E::BaseField>; 3] {
&self.value
}
/// Creates the same point in affine coordinates. That is,
/// returns [x / z: y / z: 1] where `self` is [x: y: z].
/// Panics if `self` is the point at infinity.
pub fn to_affine(&self) -> Self {
let [x, y, z] = self.coordinates();
// If it's the point at infinite
if z == &FieldElement::zero() {
// We make sure all the points at infinite have the same values
return Self::new([
FieldElement::zero(),
FieldElement::one(),
FieldElement::zero(),
]);
};
let inv_z = z.inv().unwrap();
ProjectivePoint::new([x * &inv_z, y * inv_z, FieldElement::one()])
}
}
impl<E: IsEllipticCurve> PartialEq for ProjectivePoint<E> {
fn eq(&self, other: &Self) -> bool {
let [px, py, pz] = self.coordinates();
let [qx, qy, qz] = other.coordinates();
(px * qz == pz * qx) && (py * qz == qy * pz)
}
}
impl<E: IsEllipticCurve> Eq for ProjectivePoint<E> {}
#[derive(Debug, Clone)]
pub struct JacobianPoint<E: IsEllipticCurve> {
pub value: [FieldElement<E::BaseField>; 3],
}
impl<E: IsEllipticCurve> JacobianPoint<E> {
/// Creates an elliptic curve point giving the Jacobian [x: y: z] coordinates.
pub const fn new(value: [FieldElement<E::BaseField>; 3]) -> Self {
Self { value }
}
/// Returns the `x` coordinate of the point.
pub fn x(&self) -> &FieldElement<E::BaseField> {
&self.value[0]
}
/// Returns the `y` coordinate of the point.
pub fn y(&self) -> &FieldElement<E::BaseField> {
&self.value[1]
}
/// Returns the `z` coordinate of the point.
pub fn z(&self) -> &FieldElement<E::BaseField> {
&self.value[2]
}
/// Returns a tuple [x, y, z] with the coordinates of the point.
pub fn coordinates(&self) -> &[FieldElement<E::BaseField>; 3] {
&self.value
}
pub fn to_affine(&self) -> Self {
let [x, y, z] = self.coordinates();
// If it's the point at infinite
if z == &FieldElement::zero() {
// We make sure all the points at infinite have the same values
return Self::new([
FieldElement::one(),
FieldElement::one(),
FieldElement::zero(),
]);
};
let inv_z = z.inv().unwrap();
let inv_z_square = inv_z.square();
let inv_z_cube = &inv_z_square * &inv_z;
JacobianPoint::new([x * inv_z_square, y * inv_z_cube, FieldElement::one()])
}
}
impl<E: IsEllipticCurve> PartialEq for JacobianPoint<E> {
fn eq(&self, other: &Self) -> bool {
// In Jacobian coordinates, the equality of two points is defined as:
// X1 * Z2^2 == X2 * Z1^2 y Y1 * Z2^3 == Y2 * Z1^3
let [px, py, pz] = self.coordinates();
let [qx, qy, qz] = other.coordinates();
let zp_sq = pz.square();
let zq_sq = qz.square();
let zp_cu = &zp_sq * pz;
let zq_cu = &zq_sq * qz;
let xp_zq_sq = px * zq_sq;
let xq_zp_sq = qx * zp_sq;
let yp_zq_cu = py * zq_cu;
let yq_zp_cu = qy * zp_cu;
(xp_zq_sq == xq_zp_sq) && (yp_zq_cu == yq_zp_cu)
}
}
impl<E: IsEllipticCurve> Eq for JacobianPoint<E> {}
#[cfg(test)]
mod tests {
use crate::cyclic_group::IsGroup;
use crate::elliptic_curve::short_weierstrass::curves::test_curve_1::{
TestCurve1, TestCurvePrimeField, TestCurveQuadraticNonResidue,
TEST_CURVE_1_MAIN_SUBGROUP_ORDER,
};
use crate::elliptic_curve::short_weierstrass::curves::test_curve_2::TestCurve2;
use crate::field::element::FieldElement;
use crate::unsigned_integer::element::U384;
//use crate::elliptic_curve::curves::test_curve_2::TestCurve2;
use crate::elliptic_curve::traits::{EllipticCurveError, IsEllipticCurve};
use crate::field::extensions::quadratic::QuadraticExtensionFieldElement;
#[allow(clippy::upper_case_acronyms)]
type FEE = QuadraticExtensionFieldElement<TestCurvePrimeField, TestCurveQuadraticNonResidue>;
// This tests only apply for the specific curve found in the configuration file.
#[test]
fn create_valid_point_works() {
let point = TestCurve1::create_point_from_affine(FEE::from(35), FEE::from(31)).unwrap();
assert_eq!(*point.x(), FEE::from(35));
assert_eq!(*point.y(), FEE::from(31));
assert_eq!(*point.z(), FEE::from(1));
}
#[test]
fn create_invalid_points_panics() {
let a = TestCurve1::create_point_from_affine(FEE::from(0), FEE::from(1));
assert_eq!(EllipticCurveError::InvalidPoint, a.unwrap_err());
}
#[test]
fn equality_works() {
let g = TestCurve1::generator();
let g2 = g.operate_with(&g);
assert_ne!(&g2, &g);
assert_eq!(&g, &g);
}
#[test]
fn operate_with_self_works_1() {
let g = TestCurve1::generator();
assert_eq!(
g.operate_with(&g).operate_with(&g),
g.operate_with_self(3_u16)
);
}
#[test]
fn operate_with_self_works_2() {
let mut point_1 = TestCurve1::generator();
point_1 = point_1.operate_with_self(TEST_CURVE_1_MAIN_SUBGROUP_ORDER as u128);
assert!(point_1.is_neutral_element());
}
#[test]
fn doubling_a_point_works() {
let point = TestCurve1::create_point_from_affine(FEE::from(35), FEE::from(31)).unwrap();
let expected_result =
TestCurve1::create_point_from_affine(FEE::from(25), FEE::from(29)).unwrap();
assert_eq!(point.operate_with_self(2_u16).to_affine(), expected_result);
}
#[test]
fn operate_with_self_works_with_test_curve_2() {
let mut point_1 = TestCurve2::generator();
point_1 = point_1.operate_with_self(15_u16);
let expected_result = TestCurve2::create_point_from_affine(
FieldElement::new([
FieldElement::new(U384::from_hex_unchecked(
"7b8ee59e422e702458174c18eb3302e17",
)),
FieldElement::new(U384::from_hex_unchecked(
"1395065adef5a6a5457f1ea600b5a3e4fb",
)),
]),
FieldElement::new([
FieldElement::new(U384::from_hex_unchecked(
"e29d5b15c42124cd8f05d3c8500451c33",
)),
FieldElement::new(U384::from_hex_unchecked(
"e836ef62db0a47a63304b67c0de69b140",
)),
]),
)
.unwrap();
assert_eq!(point_1, expected_result);
}
#[test]
fn coordinate_getters_work() {
let x = FEE::from(35);
let y = FEE::from(31);
let z = FEE::from(1);
let point = TestCurve1::create_point_from_affine(x.clone(), y.clone()).unwrap();
let coordinates = point.coordinates();
assert_eq!(&x, point.x());
assert_eq!(&y, point.y());
assert_eq!(&z, point.z());
assert_eq!(x, coordinates[0]);
assert_eq!(y, coordinates[1]);
assert_eq!(z, coordinates[2]);
}
}