-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathpoint.rs
256 lines (228 loc) · 9.4 KB
/
point.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
use crate::{
cyclic_group::IsGroup,
elliptic_curve::{
point::ProjectivePoint,
traits::{EllipticCurveError, FromAffine, IsEllipticCurve},
},
field::element::FieldElement,
};
use super::traits::IsEdwards;
#[derive(Clone, Debug)]
pub struct EdwardsProjectivePoint<E: IsEllipticCurve>(ProjectivePoint<E>);
impl<E: IsEllipticCurve + IsEdwards> EdwardsProjectivePoint<E> {
/// Creates an elliptic curve point giving the projective [x: y: z] coordinates.
pub fn new(value: [FieldElement<E::BaseField>; 3]) -> Result<Self, EllipticCurveError> {
let (x, y, z) = (&value[0], &value[1], &value[2]);
// The point at infinity is (0, 1, 1).
// We convert every (0, y, y) into the infinity.
if x == &FieldElement::<E::BaseField>::zero() && z == y {
return Ok(Self(ProjectivePoint::new([
FieldElement::<E::BaseField>::zero(),
FieldElement::<E::BaseField>::one(),
FieldElement::<E::BaseField>::one(),
])));
}
if z != &FieldElement::<E::BaseField>::zero()
&& E::defining_equation_projective(x, y, z) == FieldElement::<E::BaseField>::zero()
{
Ok(Self(ProjectivePoint::new(value)))
} else {
Err(EllipticCurveError::InvalidPoint)
}
}
/// Returns the `x` coordinate of the point.
pub fn x(&self) -> &FieldElement<E::BaseField> {
self.0.x()
}
/// Returns the `y` coordinate of the point.
pub fn y(&self) -> &FieldElement<E::BaseField> {
self.0.y()
}
/// Returns the `z` coordinate of the point.
pub fn z(&self) -> &FieldElement<E::BaseField> {
self.0.z()
}
/// Returns a tuple [x, y, z] with the coordinates of the point.
pub fn coordinates(&self) -> &[FieldElement<E::BaseField>; 3] {
self.0.coordinates()
}
/// Creates the same point in affine coordinates. That is,
/// returns [x / z: y / z: 1] where `self` is [x: y: z].
/// Panics if `self` is the point at infinity.
pub fn to_affine(&self) -> Self {
Self(self.0.to_affine())
}
}
impl<E: IsEllipticCurve> PartialEq for EdwardsProjectivePoint<E> {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl<E: IsEdwards> FromAffine<E::BaseField> for EdwardsProjectivePoint<E> {
fn from_affine(
x: FieldElement<E::BaseField>,
y: FieldElement<E::BaseField>,
) -> Result<Self, EllipticCurveError> {
let coordinates = [x, y, FieldElement::one()];
EdwardsProjectivePoint::new(coordinates)
}
}
impl<E: IsEllipticCurve> Eq for EdwardsProjectivePoint<E> {}
impl<E: IsEdwards> IsGroup for EdwardsProjectivePoint<E> {
/// Returns the point at infinity (neutral element) in projective coordinates.
///
/// # Safety
///
/// - The values `[0, 1, 1]` are the **canonical representation** of the neutral element
/// in the Edwards curve, meaning they are guaranteed to be a valid point.
/// - `unwrap()` is used because this point is **known** to be valid, so
/// there is no need for additional runtime checks.
fn neutral_element() -> Self {
// SAFETY:
// - `[0, 1, 1]` is a mathematically verified neutral element in Edwards curves.
// - `unwrap()` is safe because this point is **always valid**.
let point = Self::new([
FieldElement::zero(),
FieldElement::one(),
FieldElement::one(),
]);
point.unwrap()
}
fn is_neutral_element(&self) -> bool {
let [px, py, pz] = self.coordinates();
px == &FieldElement::zero() && py == pz
}
/// Computes the addition of `self` and `other` using the Edwards curve addition formula.
///
/// This implementation follows Equation (5.38) from "Moonmath" (page 97).
///
/// # Safety
///
/// - The function assumes both `self` and `other` are valid points on the curve.
/// - The resulting coordinates are computed using a well-defined formula that
/// maintains the elliptic curve invariants.
/// - `unwrap()` is safe because the formula guarantees the result is valid.
fn operate_with(&self, other: &Self) -> Self {
// This avoids dropping, which in turn saves us from having to clone the coordinates.
let (s_affine, o_affine) = (self.to_affine(), other.to_affine());
let [x1, y1, _] = s_affine.coordinates();
let [x2, y2, _] = o_affine.coordinates();
let one = FieldElement::one();
let (x1y2, y1x2) = (x1 * y2, y1 * x2);
let (x1x2, y1y2) = (x1 * x2, y1 * y2);
let dx1x2y1y2 = E::d() * &x1x2 * &y1y2;
let num_s1 = &x1y2 + &y1x2;
let den_s1 = &one + &dx1x2y1y2;
let num_s2 = &y1y2 - E::a() * &x1x2;
let den_s2 = &one - &dx1x2y1y2;
// SAFETY: The creation of the result point is safe because the inputs are always points that belong to the curve.
// We are using that den_s1 and den_s2 aren't zero.
// See Theorem 3.3 from https://eprint.iacr.org/2007/286.pdf.
let x_coord = (&num_s1 / &den_s1).unwrap();
let y_coord = (&num_s2 / &den_s2).unwrap();
let point = Self::new([x_coord, y_coord, one]);
point.unwrap()
}
/// Returns the additive inverse of the projective point `p`
///
/// # Safety
///
/// - Negating the x-coordinate of a valid Edwards point results in another valid point.
/// - `unwrap()` is safe because negation does not break the curve equation.
fn neg(&self) -> Self {
let [px, py, pz] = self.coordinates();
// SAFETY:
// - The negation formula for Edwards curves is well-defined.
// - The result remains a valid curve point.
let point = Self::new([-px, py.clone(), pz.clone()]);
point.unwrap()
}
}
#[cfg(test)]
mod tests {
use crate::{
cyclic_group::IsGroup,
elliptic_curve::{
edwards::{curves::tiny_jub_jub::TinyJubJubEdwards, point::EdwardsProjectivePoint},
traits::{EllipticCurveError, IsEllipticCurve},
},
field::element::FieldElement,
};
fn create_point(x: u64, y: u64) -> EdwardsProjectivePoint<TinyJubJubEdwards> {
TinyJubJubEdwards::create_point_from_affine(FieldElement::from(x), FieldElement::from(y))
.unwrap()
}
#[test]
fn create_valid_point_works() {
let p = TinyJubJubEdwards::create_point_from_affine(
FieldElement::from(5),
FieldElement::from(5),
)
.unwrap();
assert_eq!(p.x(), &FieldElement::from(5));
assert_eq!(p.y(), &FieldElement::from(5));
assert_eq!(p.z(), &FieldElement::from(1));
}
#[test]
fn create_invalid_point_returns_invalid_point_error() {
let result = TinyJubJubEdwards::create_point_from_affine(
FieldElement::from(5),
FieldElement::from(4),
);
assert_eq!(result.unwrap_err(), EllipticCurveError::InvalidPoint);
}
#[test]
fn operate_with_works_for_points_in_tiny_jub_jub() {
let p = EdwardsProjectivePoint::<TinyJubJubEdwards>::new([
FieldElement::from(5),
FieldElement::from(5),
FieldElement::from(1),
])
.unwrap();
let q = EdwardsProjectivePoint::<TinyJubJubEdwards>::new([
FieldElement::from(8),
FieldElement::from(5),
FieldElement::from(1),
])
.unwrap();
let expected = EdwardsProjectivePoint::<TinyJubJubEdwards>::new([
FieldElement::from(0),
FieldElement::from(1),
FieldElement::from(1),
])
.unwrap();
assert_eq!(p.operate_with(&q), expected);
}
#[test]
fn test_negation_in_edwards() {
let a = create_point(5, 5);
let b = create_point(13 - 5, 5);
assert_eq!(a.neg(), b);
assert!(a.operate_with(&b).is_neutral_element());
}
#[test]
fn operate_with_works_and_cycles_in_tiny_jub_jub() {
let g = create_point(12, 11);
assert_eq!(g.operate_with_self(0_u16), create_point(0, 1));
assert_eq!(g.operate_with_self(1_u16), create_point(12, 11));
assert_eq!(g.operate_with_self(2_u16), create_point(8, 5));
assert_eq!(g.operate_with_self(3_u16), create_point(11, 6));
assert_eq!(g.operate_with_self(4_u16), create_point(6, 9));
assert_eq!(g.operate_with_self(5_u16), create_point(10, 0));
assert_eq!(g.operate_with_self(6_u16), create_point(6, 4));
assert_eq!(g.operate_with_self(7_u16), create_point(11, 7));
assert_eq!(g.operate_with_self(8_u16), create_point(8, 8));
assert_eq!(g.operate_with_self(9_u16), create_point(12, 2));
assert_eq!(g.operate_with_self(10_u16), create_point(0, 12));
assert_eq!(g.operate_with_self(11_u16), create_point(1, 2));
assert_eq!(g.operate_with_self(12_u16), create_point(5, 8));
assert_eq!(g.operate_with_self(13_u16), create_point(2, 7));
assert_eq!(g.operate_with_self(14_u16), create_point(7, 4));
assert_eq!(g.operate_with_self(15_u16), create_point(3, 0));
assert_eq!(g.operate_with_self(16_u16), create_point(7, 9));
assert_eq!(g.operate_with_self(17_u16), create_point(2, 6));
assert_eq!(g.operate_with_self(18_u16), create_point(5, 5));
assert_eq!(g.operate_with_self(19_u16), create_point(1, 11));
assert_eq!(g.operate_with_self(20_u16), create_point(0, 1));
}
}