You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
It is very incredible that the version using pre-trained word embedding is worse than the one using random word embedding. I don't know if I had wrong configurations, configurations are as follows:
train.json:
{
"encoder": "gru",
"encoder_dim": 1200,
"bidir": true,
"case_sensitive": true,
"checkpoint_path": "",
"vocab_configs": [
{
"mode": "fixed",
"name": "word_embedding",
"cap": false,
"dim": 200,
"size": 1133884,
"vocab_file": "/nfs/private/FST/models/embeddings/glove.840B.300d.txt",
"embs_file": ""
}
]
}
It is very incredible that the version using pre-trained word embedding is worse than the one using random word embedding. I don't know if I had wrong configurations, configurations are as follows:
train.json:
{
"encoder": "gru",
"encoder_dim": 1200,
"bidir": true,
"case_sensitive": true,
"checkpoint_path": "",
"vocab_configs": [
{
"mode": "fixed",
"name": "word_embedding",
"cap": false,
"dim": 200,
"size": 1133884,
"vocab_file": "/nfs/private/FST/models/embeddings/glove.840B.300d.txt",
"embs_file": ""
}
]
}
run.sh:
RESULTS_HOME="results"
MDL_CFGS="model_configs"
GLOVE_PATH="/nfs/private/FST/models/embeddings/"
DATA_DIR="data/CS_10M_pretrained/TFRecords"
NUM_INST=10000000 # Number of sentences
CFG="CS_10M_pretrained"
BS=400
SEQ_LEN=30
export CUDA_VISIBLE_DEVICES=0
python src/train.py
--input_file_pattern="$DATA_DIR/train-?????-of-00100"
--train_dir="$RESULTS_HOME/$CFG/train"
--learning_rate_decay_factor=0
--batch_size=$BS
--sequence_length=$SEQ_LEN
--nepochs=1
--num_train_inst=$NUM_INST
--save_model_secs=1800
--Glove_path=$GLOVE_PATH
--model_config="$MDL_CFGS/$CFG/train.json" &
export CUDA_VISIBLE_DEVICES=1
python src/eval.py
--input_file_pattern="$DATA_DIR/validation-?????-of-00001"
--checkpoint_dir="$RESULTS_HOME/$CFG/train"
--eval_dir="$RESULTS_HOME/$CFG/eval"
--batch_size=$BS
--model_config="$MDL_CFGS/$CFG/train.json"
--eval_interval_secs=1800
--sequence_length=$SEQ_LEN &
The text was updated successfully, but these errors were encountered: