-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathapp.py
114 lines (90 loc) · 5.53 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
import whisper
import streamlit as st
from pydub import AudioSegment
st.set_page_config(
page_title="Whisper based ASR",
page_icon="musical_note",
layout="wide",
initial_sidebar_state="auto",
)
audio_tags = {'comments': 'Converted using pydub!'}
upload_path = "uploads/"
download_path = "downloads/"
transcript_path = "transcripts/"
@st.cache(persist=True,allow_output_mutation=False,show_spinner=True,suppress_st_warning=True)
def to_mp3(audio_file, output_audio_file, upload_path, download_path):
## Converting Different Audio Formats To MP3 ##
if audio_file.name.split('.')[-1].lower()=="wav":
audio_data = AudioSegment.from_wav(os.path.join(upload_path,audio_file.name))
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
elif audio_file.name.split('.')[-1].lower()=="mp3":
audio_data = AudioSegment.from_mp3(os.path.join(upload_path,audio_file.name))
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
elif audio_file.name.split('.')[-1].lower()=="ogg":
audio_data = AudioSegment.from_ogg(os.path.join(upload_path,audio_file.name))
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
elif audio_file.name.split('.')[-1].lower()=="wma":
audio_data = AudioSegment.from_file(os.path.join(upload_path,audio_file.name),"wma")
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
elif audio_file.name.split('.')[-1].lower()=="aac":
audio_data = AudioSegment.from_file(os.path.join(upload_path,audio_file.name),"aac")
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
elif audio_file.name.split('.')[-1].lower()=="flac":
audio_data = AudioSegment.from_file(os.path.join(upload_path,audio_file.name),"flac")
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
elif audio_file.name.split('.')[-1].lower()=="flv":
audio_data = AudioSegment.from_flv(os.path.join(upload_path,audio_file.name))
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
elif audio_file.name.split('.')[-1].lower()=="mp4":
audio_data = AudioSegment.from_file(os.path.join(upload_path,audio_file.name),"mp4")
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
return output_audio_file
@st.cache(persist=True,allow_output_mutation=False,show_spinner=True,suppress_st_warning=True)
def process_audio(filename, model_type):
model = whisper.load_model(model_type)
result = model.transcribe(filename)
return result["text"]
@st.cache(persist=True,allow_output_mutation=False,show_spinner=True,suppress_st_warning=True)
def save_transcript(transcript_data, txt_file):
with open(os.path.join(transcript_path, txt_file),"w") as f:
f.write(transcript_data)
st.title("🗣 Automatic Speech Recognition using whisper by OpenAI ✨")
st.info('✨ Supports all popular audio formats - WAV, MP3, MP4, OGG, WMA, AAC, FLAC, FLV 😉')
uploaded_file = st.file_uploader("Upload audio file", type=["wav","mp3","ogg","wma","aac","flac","mp4","flv"])
audio_file = None
if uploaded_file is not None:
audio_bytes = uploaded_file.read()
with open(os.path.join(upload_path,uploaded_file.name),"wb") as f:
f.write((uploaded_file).getbuffer())
with st.spinner(f"Processing Audio ... 💫"):
output_audio_file = uploaded_file.name.split('.')[0] + '.mp3'
output_audio_file = to_mp3(uploaded_file, output_audio_file, upload_path, download_path)
audio_file = open(os.path.join(download_path,output_audio_file), 'rb')
audio_bytes = audio_file.read()
print("Opening ",audio_file)
st.markdown("---")
col1, col2 = st.columns(2)
with col1:
st.markdown("Feel free to play your uploaded audio file 🎼")
st.audio(audio_bytes)
with col2:
whisper_model_type = st.radio("Please choose your model type", ('Tiny', 'Base', 'Small', 'Medium', 'Large'))
if st.button("Generate Transcript"):
with st.spinner(f"Generating Transcript... 💫"):
transcript = process_audio(str(os.path.abspath(os.path.join(download_path,output_audio_file))), whisper_model_type.lower())
output_txt_file = str(output_audio_file.split('.')[0]+".txt")
save_transcript(transcript, output_txt_file)
output_file = open(os.path.join(transcript_path,output_txt_file),"r")
output_file_data = output_file.read()
if st.download_button(
label="Download Transcript 📝",
data=output_file_data,
file_name=output_txt_file,
mime='text/plain'
):
st.balloons()
st.success('✅ Download Successful !!')
else:
st.warning('⚠ Please upload your audio file 😯')
st.markdown("<br><hr><center>Made with ❤️ by <a href='mailto:[email protected]?subject=ASR Whisper WebApp!&body=Please specify the issue you are facing with the app.'><strong>Prateek Ralhan</strong></a> with the help of [whisper](https://github.com/openai/whisper) built by [OpenAI](https://github.com/openai) ✨</center><hr>", unsafe_allow_html=True)