|
| 1 | +""" |
| 2 | +PET-MAD-DOS: A universal model for the Density of States |
| 3 | +========================================================= |
| 4 | +
|
| 5 | +:Authors: Pol Febrer `@pfebrer <https://github.com/pfebrer>`_, |
| 6 | + How Wei Bin `@HowWeiBin <https://github.com/HowWeiBin>`_, |
| 7 | +
|
| 8 | +This example demonstrates how to use a universal model for the Density of States (DOS) |
| 9 | +to compute the electronic heat capacity of a material using only universal ML models. |
| 10 | +
|
| 11 | +In the example, we will: |
| 12 | +
|
| 13 | +- Use the universal PET-MAD force field to run MD for our material of interest. |
| 14 | +- Use PET-MAD-DOS to compute the DOS for snapshots of the MD trajectory. |
| 15 | +- Compute the electronic heat capacity from the predicted DOS. |
| 16 | +""" |
| 17 | + |
| 18 | +# %% |
| 19 | +# |
| 20 | +# Load PET-MAD |
| 21 | +# ------------ |
| 22 | +# |
| 23 | + |
| 24 | +import torch |
| 25 | +import numpy as np |
| 26 | + |
| 27 | +from pet_mad.calculator import PETMADCalculator |
| 28 | + |
| 29 | +petmad = PETMADCalculator(version="latest", device="cpu") |
| 30 | + |
| 31 | +# %% |
| 32 | +# |
| 33 | +# Create a system and run some MD steps |
| 34 | +# ------------------------------------- |
| 35 | +# |
| 36 | + |
| 37 | +from ase.build import bulk |
| 38 | +import ase.md |
| 39 | + |
| 40 | +atoms = bulk("Au", "diamond", a=5.43, cubic=True) |
| 41 | +atoms.calc = petmad |
| 42 | + |
| 43 | +integrator = ase.md.VelocityVerlet(atoms, timestep=0.5 * ase.units.fs) |
| 44 | + |
| 45 | +n_steps = 100 |
| 46 | + |
| 47 | +traj_atoms = [] |
| 48 | + |
| 49 | +for step in range(n_steps): |
| 50 | + # run a single simulation step |
| 51 | + integrator.run(1) |
| 52 | + |
| 53 | + traj_atoms.append(atoms.copy()) |
| 54 | + |
| 55 | +# %% |
| 56 | +# |
| 57 | +# Load the DOS model |
| 58 | +# ------------------ |
| 59 | +# |
| 60 | + |
| 61 | +from metatrain.utils.neighbor_lists import ( |
| 62 | + get_requested_neighbor_lists, |
| 63 | + get_system_with_neighbor_lists, |
| 64 | +) |
| 65 | + |
| 66 | +from metatensor.torch.atomistic import load_atomistic_model, systems_to_torch |
| 67 | + |
| 68 | +model = load_atomistic_model("dos_model.pt") |
| 69 | + |
| 70 | +# %% |
| 71 | +# |
| 72 | +# Prepare trajectory for running the DOS model |
| 73 | +# -------------------------------------------- |
| 74 | +# |
| 75 | + |
| 76 | +# Convert from ase atoms to System objects and add the neighbor lists. |
| 77 | +eval_systems = systems_to_torch(traj_atoms) |
| 78 | + |
| 79 | +eval_systems = [ |
| 80 | + get_system_with_neighbor_lists(system, get_requested_neighbor_lists(model)).to(dtype=torch.float32) |
| 81 | + for system in eval_systems |
| 82 | +] |
| 83 | + |
| 84 | +# %% |
| 85 | +# |
| 86 | +# Run the DOS model |
| 87 | +# ----------------- |
| 88 | +# |
| 89 | + |
| 90 | +from metatomic.torch import ModelEvaluationOptions |
| 91 | + |
| 92 | +# Define the evaluation options for the model (we only need the DOS output) |
| 93 | +DOS_output = model.capabilities().outputs["mtt::dos"] |
| 94 | +DOS_output.per_atom = False |
| 95 | +options = ModelEvaluationOptions( |
| 96 | + outputs={"mtt::dos": DOS_output}, |
| 97 | +) |
| 98 | + |
| 99 | +# Run the model to compute the DOS on the snapshots of the trajectory. |
| 100 | +# We only evaluate every 4th system to speed up the computation |
| 101 | +out = model(eval_systems[::4], options=options, check_consistency=False) |
| 102 | + |
| 103 | +# %% |
| 104 | +# |
| 105 | +# Plot ensemble DOS |
| 106 | +# ----------------- |
| 107 | +# |
| 108 | + |
| 109 | +import matplotlib.pyplot as plt |
| 110 | + |
| 111 | +# Get the DOS values from the output of the model (this will be shape [n_systems, n_E]) |
| 112 | +all_DOS = out["mtt::dos"].block(0).values |
| 113 | +# Get the energy axis (the bounds are always the same for PET-MAD-DOS) |
| 114 | +E = torch.linspace(-148.1456 - 1.5 - 10, 79.1528 + 1.5, all_DOS.shape[1]) |
| 115 | + |
| 116 | +# Compute the ensemble DOS by averaging over all systems |
| 117 | +# and ensure that there are no negative values |
| 118 | +ensemble_DOS = torch.mean(all_DOS, dim = 0) |
| 119 | +ensemble_DOS[ensemble_DOS < 0] = 0 |
| 120 | + |
| 121 | +# Plot the ensemble DOS |
| 122 | +plt.plot(E, ensemble_DOS) |
| 123 | +plt.xlabel('Energy (eV)') |
| 124 | +plt.ylabel('Density of States') |
| 125 | +plt.title('Ensemble Density of States from PET-MAD') |
| 126 | +plt.show() |
| 127 | + |
| 128 | +# %% |
| 129 | +# |
| 130 | +# Compute electronic heat capacity |
| 131 | +# -------------------------------- |
| 132 | +# |
| 133 | +# First some helper functions to: |
| 134 | +# |
| 135 | +# - Compute the Fermi-Dirac distribution |
| 136 | +# - Compute the Fermi level for a given density of states and number of electrons |
| 137 | +# - Compute the electronic heat capacity given a DOS. |
| 138 | +# |
| 139 | + |
| 140 | +from collections.abc import Sequence |
| 141 | + |
| 142 | +from ase.units import kB |
| 143 | +from scipy.interpolate import interp1d |
| 144 | + |
| 145 | +def fd_distribution(E: Sequence, mu: float, T: float) -> np.array: |
| 146 | + r"""Compute the Fermi-Dirac distribution. |
| 147 | +
|
| 148 | + .. math:: |
| 149 | + f(E) = \frac{1}{1 + e^{(E - \mu) / (k_B T)}} |
| 150 | +
|
| 151 | + Parameters |
| 152 | + ---------- |
| 153 | + E: |
| 154 | + Values of the energy axis for which to compute the Fermi-Dirac distribution (eV) |
| 155 | + mu: |
| 156 | + Fermi level / chemical potential (eV) |
| 157 | + T: |
| 158 | + Temperature (K) |
| 159 | + """ |
| 160 | + |
| 161 | + y = (E-mu)/ (kB * T) |
| 162 | + # np.exp(y) can lead to overflow if y is too large, so we use a trick to avoid it |
| 163 | + # We compute exp(-|y|) and then treat positive and negative values separately |
| 164 | + ey = np.exp(-np.abs(y)) |
| 165 | + |
| 166 | + negs = (y<0) |
| 167 | + pos = (y>=0) |
| 168 | + y[negs] = 1 / (1+ey[negs]) |
| 169 | + y[pos] = ey[pos] / (1+ey[pos]) |
| 170 | + |
| 171 | + return y |
| 172 | + |
| 173 | +def get_fermi(dos: Sequence, E: Sequence, n_elec: float, T: float = 0.) -> float: |
| 174 | + """Compute the Fermi level for a given density of states and number of electrons. |
| 175 | + |
| 176 | + Parameters |
| 177 | + ---------- |
| 178 | + dos: |
| 179 | + Density of states. |
| 180 | + E: |
| 181 | + Energy axis corresponding to the DOS (eV) |
| 182 | + n_elec: |
| 183 | + Total number of electrons in the system. |
| 184 | + T: |
| 185 | + Temperature (K). |
| 186 | + """ |
| 187 | + # First compute the Fermi level at T=0 by finding the energy where the |
| 188 | + # cumulative DOS equals the number of electrons |
| 189 | + cumulative_dos = torch.cumulative_trapezoid(dos, E) |
| 190 | + Efdos = interp1d(cumulative_dos, E[1:]) |
| 191 | + Ef_0 = Efdos(n_elec) |
| 192 | + |
| 193 | + if T == 0: |
| 194 | + return Ef_0 |
| 195 | + |
| 196 | + # For finite temperatures, test a range of Fermi levels around Ef_0 |
| 197 | + # and find the one that gives the correct number of electrons. |
| 198 | + integrated_doses = [] |
| 199 | + trial_fermis = np.linspace(Ef_0 - 0.5, Ef_0 + 0.5, 100) |
| 200 | + for trial_fermi in trial_fermis: |
| 201 | + fd = fd_distribution(E, trial_fermi, T) |
| 202 | + integrated_dos = torch.trapezoid(dos * fd, E) |
| 203 | + integrated_doses.append(integrated_dos) |
| 204 | + |
| 205 | + n_elecs_Ef = interp1d(integrated_doses, trial_fermis) |
| 206 | + Ef = n_elecs_Ef(n_elec) |
| 207 | + return Ef |
| 208 | + |
| 209 | +def compute_heat_capacity(dos: Sequence, E: Sequence, T: float, n_elec: float, dT: float = 1.): |
| 210 | + """Compute the electronic heat capacity. |
| 211 | + |
| 212 | + It uses the finite difference method to compute the heat capacity |
| 213 | + from the change in internal energy with temperature. |
| 214 | +
|
| 215 | + Parameters |
| 216 | + ---------- |
| 217 | + dos: |
| 218 | + Density of states. |
| 219 | + E: |
| 220 | + Energy axis corresponding to the DOS (eV) |
| 221 | + n_elec: |
| 222 | + Total number of electrons in the system. |
| 223 | + T: |
| 224 | + Temperature (K). |
| 225 | + dT: |
| 226 | + Temperature step for finite difference (K). |
| 227 | + """ |
| 228 | + # The calculations are more numerically stable if we shift the energy so that |
| 229 | + # near the fermi level energies are close to zero. We compute the Fermi level |
| 230 | + # at T to shift the energy axis. |
| 231 | + Ef_T = get_fermi(dos, E, n_elec=n_elec, T=T) |
| 232 | + E = E - Ef_T |
| 233 | + |
| 234 | + # Compute the internal energy at T-dT and T+dT |
| 235 | + U = [] |
| 236 | + for T_side in (T - dT, T + dT): |
| 237 | + |
| 238 | + Ef_side = get_fermi(dos, E, n_elec=n_elec, T=T_side) |
| 239 | + |
| 240 | + U_side = torch.trapezoid(E * dos * fd_distribution(E, Ef_side, T_side), E) |
| 241 | + U.append(U_side) |
| 242 | + |
| 243 | + # Compute the heat capacity as the gradient of the internal energy |
| 244 | + # with respect to temperature |
| 245 | + heat_capacity = (U[1] - U[0]) / (2 * dT) / kB |
| 246 | + |
| 247 | + return heat_capacity |
| 248 | + |
| 249 | +# %% |
| 250 | +# |
| 251 | +# Compute the heat capacity at different temperatures. |
| 252 | +# |
| 253 | +# TODO: Here we need to compute the ensemble DOS at each temperature by doing MD |
| 254 | +# at each temperature. |
| 255 | +# |
| 256 | + |
| 257 | +# Total number of electrons in the system |
| 258 | +total_elec = 19 * len(traj_atoms[0]) |
| 259 | + |
| 260 | +# Compute the heat capacity at different temperatures |
| 261 | +heat_capacities = [] |
| 262 | +Ts = np.linspace(200, 1000, 10) |
| 263 | +for T in Ts: |
| 264 | + heat_capacity = compute_heat_capacity(ensemble_DOS, E, T, n_elec=total_elec, dT=1) |
| 265 | + |
| 266 | + heat_capacities.append(heat_capacity.item() / len(traj_atoms[0])) |
| 267 | + |
| 268 | +# Plot them |
| 269 | +plt.plot(Ts, heat_capacities) |
| 270 | +plt.xlabel('Temperature (K)') |
| 271 | +plt.ylabel('Heat Capacity [eV/(K*atom)] (divided by kB)') |
| 272 | +plt.title('Electronic Heat Capacity from PET-MAD') |
| 273 | +plt.show() |
| 274 | + |
| 275 | + |
0 commit comments