-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrangling.py
742 lines (572 loc) · 25.3 KB
/
wrangling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
#===========================================================#
# METRO RIDERSHIP ANALYSIS - DATA WRANGLING
#
# NOTE: Project for GA Data Science class.
# In this file is, data wrangling, data visualization,
# and generating the compiled dataset for analysis
#===========================================================#
# CREATED BY: Lena Nguyen - March 15, 2015
#===========================================================#
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import os
# Set current working directory
os.chdir("/Users/Zelda/Data Science/GA/Project/Data")
#=======================================================#
# METRO DATA
#=======================================================#
# Data of daily ridership of metro rail from Open Data DC
# Note: Not disaggregated by station
# Source: http://www.opendatadc.org/dataset/wmata-metrorail-ridership-by-date
# Data scraped from visualization: http://planitmetro.com/ridership_cal/
#===========#
# READ DATA #
#===========#
# OPEN DATA DC METRO RIDERSHIP DATA
metro = pd.read_csv('metro.csv', header=False, names=['Date','Riders'])
# QUICK LOOK
metro.head(10)
metro.describe()
metro.dtypes
assert (metro.duplicated().sum() == 0) # make sure there are no duplicate values
metro.isnull().sum() # check for missing values
#======================#
# CLEAN/TRANSFORM DATA #
#======================#
# CLEAN DATA
metro[metro['Riders'] == 0]
#-- One value of 0 for October 29, 2012. Is this correct?
#-- Google of the date shows that the value is correct
#-- Whole metrorail system was shut down due to Hurricane Sandy on that day
#-- https://www.wmata.com/about_metro/news/PressReleaseDetail.cfm?ReleaseID=5362
#-- http://www.wmata.com/about_metro/news/PressReleaseDetail.cfm?ReleaseID=5363
# TRANSFORM DATES
# NOTE: More interested in weekday versus weekend ridership
# So I need to transform each into its corresponding day of the week
metro['Date'] = pd.to_datetime(metro.Date, format='%Y-%m-%d')
metro.dtypes
metro.set_index('Date', inplace=True)
# Year
metro['Year'] = metro.index.year
# Month
metro['Month'] = metro.index.month
# Day
metro['Day'] = metro.index.day
# Label day of week
metro['Weekday'] = metro.index.weekday # Creates integer for day of week
weekend = metro[metro.Weekday.isin([5, 6])]
weekday = metro[~(metro.Weekday.isin([5, 6]))]
# Map the integer to names
metro['Weekday'] = metro.Weekday.map({ 0:'Mon', 1:'Tue', 2:'Wed',
3:'Thu', 4:'Fri', 5:'Sat',
6:'Sun'})
#============#
# GRAPH DATA #
#============#
# General trend of ridership over the years
metro.groupby('Year').Total.mean().plot(kind='line',
color='r',
linewidth=2,
title='Average Metro Ridership by Year')
plt.savefig('Average Ridership by Year.png') # save plot to file
metro.groupby('Month').Total.mean().plot(kind='line',
color='c',
linewidth=2,
title='Average Metro Ridership by Month')
plt.savefig('Average Ridership by Month.png') # save plot to file
# General trend of ridership by days of the week
metro.groupby(['Year','Weekday']).Total.mean().unstack(0).plot(kind='line',
title='Average Metro Ridership by Day of the Week')
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # moves legend to the side
plt.savefig('Average Ridership by Day of Week.png')
# Box plot of the same graph as above
# Shows average ridership by day of the week
metro.boxplot(column='Total', by='Weekday', sym=' ')
plt.xlabel('Day of Week')
plt.ylabel('Average number of riders')
plt.title('Average number of riders by Day')
plt.savefig('Average Ridership by Day of Week (Boxplot).png')
# Looking at ridership by month to see if there's any seasonal variation
# Hard to look at but you get the general trend. There's gotta be a prettier way
metro.groupby(['Year', 'Month']).Total.mean().unstack(0).plot(kind='bar')
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
# Line graph of average metro ridership by month
metro.groupby(['Year', 'Month']).Total.mean().unstack(0).plot(kind='line',
title='Average Metro Ridership by Month')
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
# Mildly easier but not by much. Can see the general trend
# Effects of Snowmageddon (February 2010)
metro_snow = metro[(metro.Year.isin([2010])) & (metro.Month == 2)]
metro_snow.groupby(['Year', 'Day']).Total.sum().unstack(0).plot(kind='bar',
color='c',
figsize=(7, 9),
title='Effects of Snow Day on Metro Ridership')
plt.legend().set_visible(False) # Hides legend
plt.savefig('Ridership for February 2010.png')
# ? How to turn the bars different lines different colors to highlight?
# Look at a regular month (July 2010)
metro_july = metro[(metro.Year.isin([2010])) & (metro.Month == 7)]
metro_july.groupby(['Year', 'Day']).Total.sum().unstack(0).plot(kind='bar',
color='r',
figsize=(7,9),
title='Daily Ridership in July 2010')
plt.legend().set_visible(False) # Hides legend
plt.savefig('Ridership for July 2010.png')
# Graph weekend and weekday ridership on the same line
weekday.groupby('Month').Total.mean().plot(kind='line', color='b', linewidth=2)
weekend.groupby('Month').Total.mean().plot(kind='line', color='r', linewidth=2)
plt.xlabel('Month')
plt.ylabel('Average Number of Riders')
plt.title('Weekend and Weekday Ridership by Month')
plt.axis([1, 12, 100000, 800000])
plt.savefig('Weekday vs weekend Ridership.png')
#########################################################################
#=============================#
# MAY 2013 ENTRANCE/EXIT DATA #
#=============================#
#-- NOTE: This dataset will help us see how people are moving throughout
#-- the metrorail system in different times of days
#-- For example, is everyone coming from the MD/VA suburbs in the morning to DC?
#-- Not very important for the regression but interesting data
#-- NOTE: Late night data only for Saturday night (Labeled as Sunday).
#-- The number of riders seem too small from personal experience
#-- I plan to ignore late night data completely. Does not seem reliable.
# Data of rail ridership from May 2013
# This data will be mainly used to see how people are moving throught the Metrorail system
# Source: http://planitmetro.com/2014/08/28/data-download-may-2013-2014-metrorail-ridership-by-origin-and-destination/
# MAY 2013 RIDERSHIP DATA
may13 = pd.read_csv('Metro_May_2013_Data.csv', header=True,
names=['Holiday', 'Day', 'Entrance', 'Exit', 'Period', 'Riders'])
# QUICK LOOK
may13.head(10)
may13.describe()
may13.dtypes
#======================#
# CLEAN/TRANSFORM DATA #
#======================#
# Transform Riders column from object to integer
may13['Riders'] = may13['Riders'].map(lambda x: x.replace(',', '')) # removes the , from the numbers
may13['Riders'] = may13.Riders.astype('int') # makes them all ints
may13['Riders'].describe()
#============#
# GRAPH DATA #
#============#
may13.groupby(['Period']).Riders.sum().plot(kind='line', color='r',figsize=(7,9))
plt.title('Total Daily Ridership in May 2013')
plt.legend().set_visible(False) # Hides legend
# AM PEAK
ampeak = may13[may13.Period.isin(['AM Peak'])] # Make a data frame with the AM Peak obs
# Make a stacked bar graph with the number of riders by Entrance and Exit Stations
ampeak.groupby(['Exit']).Riders.sum().plot(kind='bar', color='b')
ampeak.groupby(['Entrance']).Riders.sum().plot(kind='bar', color='r')
plt.title('Number of Riders Entering/Exiting at Station during AM Peak in May 2013')
plt.legend()
# PM PEAK
pmpeak = may13[may13.Period.isin(['PM Peak'])] # Make a data frame with the PM Peak obs
# Make a stacked bar graph with the number of riders by Entrance and Exit Stations
pmpeak.groupby(['Exit']).Riders.sum().plot(kind='bar', color='m', label='Exit')
pmpeak.groupby(['Entrance']).Riders.sum().plot(kind='bar', color='g', label='Entrance')
plt.title('Number of Riders Entering/Exiting at Station during PM Peak in May 2013')
plt.legend()
#########################################################################
#=======================================================#
# WEATHER DATA
#=======================================================#
# Daily weather data
# Source: NOAA, Washington Reagan National Airport Weather Station
# IMPORTANT: Variables are all measured in METRIC units.
# PRCP/SNOW is measured in millimiters .
# TMAX/TMIN are in tenths of degrees celsius
#===========#
# READ DATA #
#===========#
weather = pd.read_csv('Weather - Daily.csv')
# QUICK LOOK
weather.columns.values
weather.head(10)
weather.dtypes
weather.describe()
#-- 406 degrees Celsius (~771 deg F/hotter than hell) seems a bit high to be a max temp.
#-- TMAX and TMIN variable have to be divided by 10 to get degrees Celsius
#-- That must be what tenths of degrees celsius in documentation means
assert (weather.duplicated().sum() == 0) # make sure there are no duplicate values
weather.isnull().sum() # check for missing values
#======================#
# CLEAN/TRANSFORM DATA #
#======================#
# Documentation says that "-9999" means it's a missing value
# Will transform those to NaN values to see how many missing values there actually are
cols = list(weather.columns.values)
for col in cols:
weather[col][weather[col] == -9999] = np.nan
weather.isnull().sum() # check number of missing values
#-- WT columns have a 1 for a day when a certain weather type occurs
#-- Most weather don't occur that often
#-- Surprisingly, snow (WT18) occurs only 264 days from 2004-2014. Hail (WT05) occurs more often at 364 days
#-- Most common are Fog (WT01), Rain (WT16), Mist (WT13), Haze (WT08)
#-- Will drop some (maybe all?) WT columns
#-- For now, keep Hail (WT05), Rain (WT16), Snow (WT18), Thunder (WT03)
# REMOVE SOME COLUMNS
weather.drop(weather.columns[:2], axis=1, inplace=True) # Removes Station/Station Name columns
weather.drop(weather.columns[6:14], axis=1, inplace=True) # Removes WT columns
weather.columns.values # assess the damage
weather.drop(weather.columns[7:12], axis=1, inplace=True) # Removes more WT columns
weather.columns.values # assess the damage
weather.drop(weather.columns[-2:], axis=1, inplace=True) # Remove more WT columns
del weather['WT08'] # Last manual removal
weather.columns.values # assess the damage
# CHANGE MISSING VALUES TO 0
# This will make the WT variables binary variables
cols = list(weather.columns.values)
for col in cols:
weather[col][np.isnan(weather[col])] = 0
weather.isnull().sum() # No missing values
weather.describe()
# SEPARATE DATE INTO YEAR, MONTH, DAY
weather['DATE'] = pd.to_datetime(weather.DATE, format='%Y%m%d')
weather.set_index('DATE', inplace=True)
# Year
weather['Year'] = weather.index.year
# Month
weather['Month'] = weather.index.month
# Day
weather['Day'] = weather.index.day
# Drop date column
weather.reset_index(drop=True)
# Convert from metric to imperial units for easier understanding
def convert(df, var):
if var in ['TMAX', 'TMIN']:
df[var] = df[var].map(lambda x: (((9.0/5.0)*(x/10.0) + 32)))
elif var == 'PRCP':
df[var] = df[var].map(lambda x: (x/254.0))
elif var in ['SNWD', 'SNOW']:
df[var] = df[var].map(lambda x: (x/25.4))
# Loop through all the variables that need converting
for x in weather.columns.values[:5]:
convert(weather,x)
weather.describe()
# Those max/min temps look much more reasonable
#============#
# GRAPH DATA #
#============#
# Look at data numerically
weather.groupby('Year')['PRCP','SNWD', 'SNOW','TMAX','TMIN'].mean() # Average by year
weather.groupby('Year')['PRCP','SNWD', 'SNOW','TMAX','TMIN'].max() # Average by year
# Look at data numerically
weather.groupby('Month')['PRCP','SNWD', 'SNOW','TMAX','TMIN'].mean() # Average by month
weather.groupby('Month')['PRCP','SNWD', 'SNOW','TMAX','TMIN'].max() # Average by year
# Scatter matrix (to help check for collinearity)
pd.scatter_matrix(weather[['PRCP','SNWD', 'SNOW']])
# Total rain fail by month
weather.groupby('Month').PRCP.sum().plot(kind='bar',color='g')
plt.xlabel('Month')
plt.ylabel('Total Precipitation Amount (Inches)')
plt.title('Total Precipitation by Month')
weather.groupby('Month').SNWD.mean().plot(kind='bar',color='g')
plt.xlabel('Month')
plt.ylabel('Total Precipitation Amount (Inches)')
plt.title('Total Precipitation by Month')
# Average low/high temperature by month
weather.groupby('Month').TMAX.mean().plot(kind='line', color='b', label='Max Temp')
weather.groupby('Month').TMIN.mean().plot(kind='line', color='r', label='Min Temp')
plt.xlabel('Month')
plt.ylabel('Average Temperature (Deg F)')
plt.axis([1, 12, 0, 100])
plt.legend()
# Record max/min temp from 2004-2014 by month
weather.groupby('Month').TMAX.max().plot(kind='line', color='b', label='Max Temp')
weather.groupby('Month').TMIN.min().plot(kind='line', color='r', label='Min Temp')
plt.xlabel('Month')
plt.ylabel('Temperature (Deg F)')
plt.axis([1, 12, 0, 120])
plt.legend()
#============#
# MERGE DATA #
#============#
data = pd.merge(metro, weather, on=['Year', 'Month', 'Day']) # Merge metro/weather data
data.columns.values
data.head(10)
assert len(data) == 4018 # should have 4018 obs in dataset
##########################################################################
#=======================================================#
# GAS PRICE DATA
#=======================================================#
# Monthly data of gas prices in Lower Atlantic Region from EIA
# Source URL: http://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_r1z_m.htm
#===========#
# READ DATA #
#===========#
gas = pd.read_csv('Gas Prices.csv')
gas.columns = ['Date', 'Gas_Price'] # Rename columns
# QUICK LOOK
gas.head(10)
gas.describe
gas.dtypes
assert (gas.duplicated().sum() == 0) # make sure there are no duplicate values
gas.isnull().sum()
# No missing data
#======================#
# CLEAN/TRANSFORM DATA #
#======================#
# Round price column to 2 decimal places to look like dollar prices
gas['Gas_Price'] = np.round(gas['Gas_Price'], decimals=2)
# Change date into month/year column
gas['Date'] = pd.to_datetime(gas.Date, format='%m/%d/%Y')
gas.dtypes
gas.set_index('Date', inplace=True)
# Year
gas['Year'] = gas.index.year
# Month
gas['Month'] = gas.index.month
# Quarterly assignment
gas['Quarter'] = [((x-1)//3)+1 for x in gas['Month']]
#============#
# GRAPH DATA #
#============#
# General trend of gas price over the years (1993-2015)
gas.groupby('Year').Gas_Price.mean().plot(kind='line', color='b', linewidth=2)
plt.title('Average Gas Price by Year')
plt.xlabel('Year')
plt.ylabel('Average gas price (USD/Gallon)')
plt.axis([1993, 2014, 0.50, 4.00])
plt.savefig('Average Gas Price by Year.png')
#-- Graph shows continuous price increase since 1993, a short slight dip around 2009,
#-- Gas prices have been going down since Fall 2014
# See if there are seasonal differences in gas prices (Unlikely)
gas.groupby(['Quarter', 'Year']).Gas_Price.mean().unstack(0).plot(kind='bar', figsize=(7,9))
plt.title('Average Gas Price by Quarter')
plt.xlabel('Year')
plt.ylabel('Average Gas Price (USD/Gallon)')
plt.legend().set_visible(False) # Hides legend
## As suspected, no seasonal differences in gas prices that occur annually
#============#
# MERGE DATA #
#============#
del gas['Quarter'] # delete quarter variable before merge
data = pd.merge(data, gas, on=['Year', 'Month']) # Merge in gas data
data.columns.values
data.head(10)
assert len(data) == 4018 # should have 4018 obs in dataset
##########################################################################
#=======================================================#
# UNEMPLOYMENT DATA
#=======================================================#
# Monthly Unemployment data for the DC metro area, not adjusted for seasonality
# Source: http://www.bls.gov/eag/eag.dc_washington_md.htm
#===========#
# READ DATA #
#===========#
labor = pd.read_csv('Unemployment.csv')
# QUICK LOOK
labor.dtypes
labor.head(10)
labor.describe()
assert (labor.duplicated().sum() == 0) # check for duplicate values
labor.isnull().sum() # Check for missing values
#======================#
# CLEAN/TRANSFORM DATA #
#======================#
# Change month abbreviation to integers for easier merge
monthDict = {'Jan':1, 'Feb':2, 'Mar':3,
'Apr':4, 'May':5, 'Jun':6,
'Jul':7, 'Aug':8, 'Sep':9,
'Oct':10, 'Nov':11, 'Dec':12}
labor['Month'] = labor.Month.map(monthDict)
# Check it worked
labor.head(10)
labor.dtypes
#============#
# GRAPH DATA #
#============#
# General trend of unemployment rate over the years (2000-2015)
labor.groupby('Year').Unemp_Rate.mean().plot(kind='line', color='b', linewidth=2)
plt.title('Average Unemployment Rate by Year')
plt.xlabel('Year')
plt.ylabel('Average Unemployment Rate')
plt.savefig('Average Unemployment Rate by Year.png')
#-- This smooths out the seasonal effects. Unemployment rate doubled in 2008.
#-- This was due to the financial crisis in 2008 due to the housing bubble bursting
#============#
# MERGE DATA #
#============#
data = pd.merge(data, labor, on=['Year', 'Month']) # Merge in unemployment data
data.columns.values
data.head(10)
assert len(data) == 4018 # should have 4018 obs
##########################################################################
#=======================================================#
# FEDERAL GOVERNMENT CLOSING DATA
#=======================================================#
# Data with dates of federal holidays from 1997 - 2020
# Source: http://catalog.data.gov/dataset/federal-holidays
# Also added the government shut down days in October 2013 and snow days from OPM website
#===========#
# READ DATA #
#===========#
holiday = pd.read_csv('holidays.csv')
holiday.head(10) # quick look at data
holiday.describe()
assert (holiday.duplicated().sum() == 0) # make sure there are no duplicate values
holiday.isnull().sum() # check for missing values
#======================#
# CLEAN/TRANSFORM DATA #
#======================#
# Keep only days where federal government was closed for relevant years (2004-2014)
holiday = holiday[(holiday['Year'] > 2003) & (holiday['Year'] < 2015)]
holiday.head(10) # check it worked
holiday['Holiday'] = 1 # mark which days where federal govt was closed for merge
holiday.head() # check it worked
#============#
# MERGE DATA #
#============#
data = pd.merge(data, holiday, how='outer', on=['Year', 'Month', 'Day']) # Merge in holidays data
data.head(10)
assert len(data) == 4018 # Should be 4018 obs
# Replace NaN values with 0 to make it a binary variable
data['Holiday'].fillna(value=0, inplace=True)
data['Holiday'].isnull().sum() # check it worked
data['Holiday'] = data['Holiday'].astype('int8') # Turn into integer
#=======================================================#
# CAPITAL BIKESHARE DATA
#=======================================================#
# Data summarizing the capital bikeshare ridership data
# This dataset of number of registered/casual was compiled from their trip history data
# Source: https://www.capitalbikeshare.com/trip-history-data
# Casual useers will be a proxy for tourism
# CaBi started in 2010 so there is only data from 2010-2014
cabi = pd.read_csv('CaBi.csv')
cabi.head(10) # quick look at data
cabi.describe()
assert (cabi.duplicated().sum() == 0) # make sure there are no duplicate values
cabi.isnull().sum()
#============#
# MERGE DATA #
#============#
data = pd.merge(data, cabi, how='outer', on=['Year', 'Month', 'Day']) # Merge in bikeshare data
data.head(10)
assert len(data) == 4018 # Should be 4018 obs
#=======================================================#
# NUMBER OF TRAINS DATA
#=======================================================#
# Using the data from the WMATA website:
# http://www.wmata.com/rail/frequency.cfm
# and a bit of math.
# See the following spreadsheet for the math part:
# https://docs.google.com/spreadsheets/d/1sXMg_2tFk22iIffE610YcJFJAdwMj2NgVwkaKZR2Evo/edit?usp=sharing
#===========#
# READ DATA #
#===========#
cars = pd.read_csv('Metro_cars.csv')
cars.columns = ['Weekday', 'Cars'] # rename columns
cars.head(10)
# Change Weekday variable be the 3 letter abbreviation of day name
# so that it looks like the metro data for merge
cars['Weekday'] = cars['Weekday'].apply(lambda x: x[0:3])
cars.head(10) # make sure it worked
#============#
# MERGE DATA #
#============#
data = pd.merge(data, cars, on='Weekday') # Merge into data
data.sort(['Year', 'Month', 'Day'], ascending=True, inplace=True) # sort by date
data.index = range(0,len(data.index)) # Re-indexing after sort
data.head(10) # Checked it worked
data.columns.values # Check that the column names are all correct
#=================================#
# CLEAN IRREGULAR TRAIN SCHEDULES #
#=================================#
#- HOLIDAY SCHEDULE
#- Holidays that fall on a weekday run on a Saturday schedule except for major holidays
#- (ie Christmas), where it runs on a Sunday schedule. Let's just change it all to
#- same number of trains as Saturday schedule for simplicity's sake
weekday = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri']
# Change number of trains from weekday number to Saturday number (89)
data['Cars'][(data['Holiday'] == 1) & (data['Weekday'].isin(weekday))] = 89
#- JULY 4TH SCHEDULE
#- According to the WMATA website:
#- July 4th runs on regular holiday schedule from 7 AM-6 PM
#- And then on "near rush hour schedule" from 6 PM until midnight
#- I'm assuming near rush hour is 8 minutes per train
#- The math works out to 100 trains for July 4th
# Change number of trains for July 4th
data['Cars'][(data['Month'] == 7) & (data['Day'] == 4)] = 100
#- PRESIDENTIAL INAUGURATION
# In this dataset, there are three presidential inaguaration in this dataset.
# GW Bush - January 20, 2005; Obama - January20, 2009 and 2013
# According to the WMATA website, they run on a 4 AM - 9 PM rush hour
# And then regular holiday service after 9 PM
# Math works out to 190 cars
inaug_year = [2005, 2009, 2013]
# Change number of trains for Inauguration days
data['Cars'][(data['Year'].isin(inaug_year)) & (data['Month'] == 1) & (data['Day'] == 20)] = 190
#=========================#
# FINAL DATA MANIPULATION #
#=========================#
# Bikeshare did not exist before 2010 so will fill NaN values with 0
# for all the models
data['Registered'].fillna(value=0, inplace=True)
data['Casual'].fillna(value=0, inplace=True)
data.isnull().sum() # check it worked
# Add binary variable of months into original data frame to use months as features
data = pd.concat([data, pd.get_dummies(data['Month'], prefix='Month')], axis=1)
data = pd.concat([data, pd.get_dummies(data['Weekday'])], axis=1)
data.columns.values # Check it worked
# Create ridership per train variable
data['RidersPC'] = data['Riders']/data['Cars']
data.head() # Check it worked
#=========================#
# EXPORT COMPILED DATASET #
#=========================#
data.to_csv('model_data.csv', index=False)
#=======================================================#
# SCATTER PLOTS
#=======================================================#
# Scatter matrix with weather data and Rider per Train
wdata = ['RidersPC','PRCP','SNWD','SNOW','TMAX','TMIN']
wscatter = data[wdata]
pd.scatter_matrix(wscatter)
#===============#
# WEEKDAY PLOTS #
#===============#
weekday = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri']
weekday = data[data.Weekday.isin(weekday)]
# Scatter plot with Unemployment Rate
plt.scatter(weekday.Unemp_Rate, weekday.RidersPC, alpha=.8, color='r')
plt.xlabel("Unemployment Rate")
plt.ylabel("Riders per Train")
plt.show()
#- In general, the employment rate seems to not really have much of a relationship
#- with total number of riders
# Scatter plot with total number of people employed
plt.scatter(weekday.Employment, weekday.RidersPC, alpha=.8, color='b')
plt.xlabel("Total number of people employed (Number of person, in thousands)")
plt.ylabel("Riders per Train")
plt.show()
#- Slight upward trend but not a clear relationship
# Scatter plot with gas prices
plt.scatter(weekday.Gas_Price, weekday.RidersPC, alpha=.8, color='b')
plt.xlabel("Gas Price in Lower Atlantic Area")
plt.ylabel("Riders per Train")
plt.show()
# Scatter plot with number of trips taken by registered CaBi riders
plt.scatter(weekday.Registered, weekday.RidersPC, alpha=.8, color='r')
plt.xlabel("Total Number of Trips by Registered Riders")
plt.ylabel("Riders per Train")
plt.show()
# Does not appear to be a clear relationship
plt.scatter(weekday.Casual, weekday.RidersPC, alpha=.8, color='b')
plt.xlabel("Total Number of Trips by Casual Riders")
plt.ylabel("Riders per Train")
plt.show()
# Does not appear to be a clear relationship
# Bar graph of average holiday travel versus Regular day
data.groupby('Holiday').RidersPC.mean().plot(kind='bar',color='b')
plt.xlabel('Holiday')
plt.ylabel('Riders Per Train')
plt.show()
# Quite the difference in number of riders per train
# Same graph but for weekdays. Difference should be more pronounced.
weekday.groupby('Holiday').RidersPC.mean().plot(kind='bar',color='r')
plt.xlabel('Holiday')
plt.ylabel('Riders Per Train')
plt.show()