The Euler's formula refers to $$ e^{i\theta} = \operatorname{cos}\theta + i\operatorname{sin}\theta . $$
The proof of this formula can be introduced by investigating the function $$ f(\theta) = e^{-i\theta} \left( \operatorname{cos}\theta + i\operatorname{sin}\theta\right) $$ with the facts that
$f'(\theta) = 0$ $f(0) = 1$
which conclude that
Beware of the following facts,
-
$e^{i\theta}$ is$2\pi$ periode function, -
$|e^{i\theta}| = 1$ .
they will be the key to step into the Fourier kingdom.
For
For
If $ {v_k}0^{n-1} = (v_0, v_1, \dots, v{n-1})$
is an orthogonal basis of space $\mathbb{C}^n$ , which means
$$
\langle v_k, v_l \rangle = ||v_k||\cdot||v_l||\cdot\delta_{k,l},
$$
where
$$
||v_k|| =
\sqrt{
\langle v_k, v_k \rangle
}
\left( \sum_{j=0}^{n-1} v_{k,j} \right)^{\frac{1}{2}} $$
Note that $ v_k = (v_{k,0}, v_{k,1},\dots v_{k,n-1}) \in\mathbb{C}^n $ and $ v_{k,j}\in\mathbb{C}$.
then
It is an orthonormal bases if
$\forall k, ||v_k|| = 1$ .
Suppose
\frac{1}{||v||^2} \begin{bmatrix} v_0 , v_1 , \cdots , v_{n-1} \end{bmatrix} \begin{bmatrix} \langle f, v_0 \rangle \ \langle f, v_1 \rangle \ \vdots \ \langle f, v_{n-1} \rangle \ \end{bmatrix}
\frac{1}{||v||^2} \begin{bmatrix} v_0 , v_1 , \cdots , v_{n-1} \end{bmatrix} \begin{bmatrix} \bar v_0 , \bar v_1 , \cdots , \bar v_{n-1} \end{bmatrix}^T f $$ that is $$ \begin{bmatrix} f_0 \ f_1 \ \ f_{n-1} \ \end{bmatrix}
\frac{1}{||v||^2} \begin{bmatrix} v_{0,0} & v_{1,0} & \cdots & v_{n-1,0} \ v_{0,1} & v_{1,1} & \cdots & v_{n-1,1} \ \vdots & \vdots & \vdots & \vdots \ v_{0,n-1} & v_{1,n-1} & \cdots & v_{n-1,n-1} \ \end{bmatrix} \begin{bmatrix} \bar v_{0,0} & \bar v_{0,1} & \cdots & \bar v_{0,n-1} \ \bar v_{1,0} & \bar v_{1,1} & \cdots & \bar v_{1,n-1} \ \vdots & \vdots & \vdots & \vdots \ \bar v_{n-1,0} & \bar v_{n-1,1} & \cdots & \bar v_{n-1,n-1} \ \end{bmatrix} \begin{bmatrix} f_0 \ f_1 \ \ f_{n-1} \ \end{bmatrix} . $$
The construction of orthogonal bases in space
$\mathbb{C}^n$ equals to find square matrix$V$ such that$V\bar V^T=||v||^2$ .
The following shows the intuition to extend $ k \in \mathbb{N}$, i.e. orthogonal bases $ {v_k}_{0}^{\infty}$,
For
For