Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 2 additions & 6 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -75,12 +75,8 @@ release: install-dev
.PHONY: test-python
test-python: uv-venv ## Run Python unit tests
@uv sync
@uv run coverage run --source=kubeflow.trainer.backends.kubernetes.backend,kubeflow.trainer.utils.utils -m pytest \
./kubeflow/trainer/backends/kubernetes/backend_test.py \
./kubeflow/trainer/backends/kubernetes/utils_test.py
@uv run coverage report -m \
kubeflow/trainer/backends/kubernetes/backend.py \
kubeflow/trainer/backends/kubernetes/utils.py
@uv run coverage run --source=kubeflow -m pytest ./kubeflow/
@uv run coverage report --omit='*_test.py' --skip-covered --skip-empty
ifeq ($(report),xml)
@uv run coverage xml
else
Expand Down
10 changes: 9 additions & 1 deletion kubeflow/trainer/api/trainer_client.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,6 +107,7 @@ def train(
trainer: Optional[
Union[types.CustomTrainer, types.CustomTrainerContainer, types.BuiltinTrainer]
] = None,
options: Optional[list] = None,
) -> str:
"""Create a TrainJob. You can configure the TrainJob using one of these trainers:

Expand All @@ -124,6 +125,8 @@ def train(
trainer: Optional configuration for a CustomTrainer, CustomTrainerContainer, or
BuiltinTrainer. If not specified, the TrainJob will use the
runtime's default values.
options: Optional list of configuration options to apply to the TrainJob.
Options can be imported from kubeflow.trainer.options.

Returns:
The unique name of the TrainJob that has been generated.
Expand All @@ -133,7 +136,12 @@ def train(
TimeoutError: Timeout to create TrainJobs.
RuntimeError: Failed to create TrainJobs.
"""
return self.backend.train(runtime=runtime, initializer=initializer, trainer=trainer)
return self.backend.train(
runtime=runtime,
initializer=initializer,
trainer=trainer,
options=options,
)

def list_jobs(self, runtime: Optional[types.Runtime] = None) -> list[types.TrainJob]:
"""List of the created TrainJobs. If a runtime is specified, only TrainJobs associated with
Expand Down
72 changes: 72 additions & 0 deletions kubeflow/trainer/api/trainer_client_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
# Copyright 2025 The Kubeflow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Unit tests for TrainerClient backend selection.
"""

from unittest.mock import Mock, patch

import pytest

from kubeflow.common.types import KubernetesBackendConfig
from kubeflow.trainer.api.trainer_client import TrainerClient
from kubeflow.trainer.backends.localprocess.types import LocalProcessBackendConfig


@pytest.mark.parametrize(
"test_case",
[
{
"name": "default_backend_is_kubernetes",
"backend_config": None,
"expected_backend": "KubernetesBackend",
"use_k8s_mocks": True,
},
{
"name": "local_process_backend_selection",
"backend_config": LocalProcessBackendConfig(),
"expected_backend": "LocalProcessBackend",
"use_k8s_mocks": False,
},
{
"name": "kubernetes_backend_selection",
"backend_config": KubernetesBackendConfig(),
"expected_backend": "KubernetesBackend",
"use_k8s_mocks": True,
},
],
)
def test_backend_selection(test_case):
"""Test TrainerClient backend selection logic."""
if test_case["use_k8s_mocks"]:
with (
patch("kubernetes.config.load_kube_config"),
patch("kubernetes.client.CustomObjectsApi") as mock_custom_api,
patch("kubernetes.client.CoreV1Api") as mock_core_api,
):
mock_custom_api.return_value = Mock()
mock_core_api.return_value = Mock()

if test_case["backend_config"]:
client = TrainerClient(backend_config=test_case["backend_config"])
else:
client = TrainerClient()

backend_name = client.backend.__class__.__name__
assert backend_name == test_case["expected_backend"]
else:
client = TrainerClient(backend_config=test_case["backend_config"])
backend_name = client.backend.__class__.__name__
assert backend_name == test_case["expected_backend"]
6 changes: 6 additions & 0 deletions kubeflow/trainer/backends/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,11 @@


class RuntimeBackend(abc.ABC):
"""Base class for runtime backends.

Options self-validate by checking the backend instance type in their __call__ method.
"""

@abc.abstractmethod
def list_runtimes(self) -> list[types.Runtime]:
raise NotImplementedError()
Expand All @@ -41,6 +46,7 @@ def train(
trainer: Optional[
Union[types.CustomTrainer, types.CustomTrainerContainer, types.BuiltinTrainer]
] = None,
options: Optional[list] = None,
) -> str:
raise NotImplementedError()

Expand Down
82 changes: 68 additions & 14 deletions kubeflow/trainer/backends/kubernetes/backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
import re
import string
import time
from typing import Optional, Union
from typing import Any, Optional, Union
import uuid

from kubeflow_trainer_api import models
Expand Down Expand Up @@ -87,15 +87,9 @@ def list_runtimes(self) -> list[types.Runtime]:
result.append(self.__get_runtime_from_cr(runtime))

except multiprocessing.TimeoutError as e:
raise TimeoutError(
f"Timeout to list {constants.CLUSTER_TRAINING_RUNTIME_KIND}s "
f"in namespace: {self.namespace}"
) from e
raise TimeoutError(f"Timeout to list {constants.CLUSTER_TRAINING_RUNTIME_KIND}s") from e
except Exception as e:
raise RuntimeError(
f"Failed to list {constants.CLUSTER_TRAINING_RUNTIME_KIND}s "
f"in namespace: {self.namespace}"
) from e
raise RuntimeError(f"Failed to list {constants.CLUSTER_TRAINING_RUNTIME_KIND}s") from e

return result

Expand Down Expand Up @@ -184,16 +178,62 @@ def train(
trainer: Optional[
Union[types.CustomTrainer, types.CustomTrainerContainer, types.BuiltinTrainer]
] = None,
options: Optional[list] = None,
) -> str:
# Generate unique name for the TrainJob.
train_job_name = random.choice(string.ascii_lowercase) + uuid.uuid4().hex[:11]
if runtime is None:
runtime = self.get_runtime(constants.TORCH_RUNTIME)

# Process options to extract configuration
job_spec = {}
labels = None
annotations = None
name = None
spec_labels = None
spec_annotations = None
trainer_overrides = {}
pod_template_overrides = None

if options:
for option in options:
option(job_spec, trainer, self)

metadata_section = job_spec.get("metadata", {})
labels = metadata_section.get("labels")
annotations = metadata_section.get("annotations")
name = metadata_section.get("name")

# Extract spec-level labels/annotations and other spec configurations
spec_section = job_spec.get("spec", {})
spec_labels = spec_section.get("labels")
spec_annotations = spec_section.get("annotations")
trainer_overrides = spec_section.get("trainer", {})
pod_template_overrides = spec_section.get("podTemplateOverrides")

# Generate unique name for the TrainJob if not provided
train_job_name = name or (
random.choice(string.ascii_lowercase)
+ uuid.uuid4().hex[: constants.JOB_NAME_UUID_LENGTH]
)

# Build the TrainJob spec using the common _get_trainjob_spec method
trainjob_spec = self._get_trainjob_spec(
runtime=runtime,
initializer=initializer,
trainer=trainer,
trainer_overrides=trainer_overrides,
spec_labels=spec_labels,
spec_annotations=spec_annotations,
pod_template_overrides=pod_template_overrides,
)

# Build the TrainJob.
train_job = models.TrainerV1alpha1TrainJob(
apiVersion=constants.API_VERSION,
kind=constants.TRAINJOB_KIND,
metadata=models.IoK8sApimachineryPkgApisMetaV1ObjectMeta(name=train_job_name),
spec=self._get_trainjob_spec(runtime, initializer, trainer),
metadata=models.IoK8sApimachineryPkgApisMetaV1ObjectMeta(
name=train_job_name, labels=labels, annotations=annotations
),
spec=trainjob_spec,
)

# Create the TrainJob.
Expand Down Expand Up @@ -549,6 +589,10 @@ def _get_trainjob_spec(
trainer: Optional[
Union[types.CustomTrainer, types.CustomTrainerContainer, types.BuiltinTrainer]
] = None,
trainer_overrides: Optional[dict[str, Any]] = None,
spec_labels: Optional[dict[str, str]] = None,
spec_annotations: Optional[dict[str, str]] = None,
pod_template_overrides: Optional[models.IoK8sApiCoreV1PodTemplateSpec] = None,
) -> models.TrainerV1alpha1TrainJobSpec:
"""Get TrainJob spec from the given parameters"""
if runtime is None:
Expand All @@ -575,9 +619,16 @@ def _get_trainjob_spec(
else:
raise ValueError(
f"The trainer type {type(trainer)} is not supported. "
"Please use CustomTrainer or BuiltinTrainer."
"Please use CustomTrainer, CustomTrainerContainer, or BuiltinTrainer."
)

# Apply trainer overrides if trainer was not provided but overrides exist
if trainer_overrides:
if "command" in trainer_overrides:
trainer_cr.command = trainer_overrides["command"]
if "args" in trainer_overrides:
trainer_cr.args = trainer_overrides["args"]

return models.TrainerV1alpha1TrainJobSpec(
runtimeRef=models.TrainerV1alpha1RuntimeRef(name=runtime.name),
trainer=(trainer_cr if trainer_cr != models.TrainerV1alpha1Trainer() else None),
Expand All @@ -589,4 +640,7 @@ def _get_trainjob_spec(
if isinstance(initializer, types.Initializer)
else None
),
labels=spec_labels,
annotations=spec_annotations,
pod_template_overrides=pod_template_overrides,
)
76 changes: 74 additions & 2 deletions kubeflow/trainer/backends/kubernetes/backend_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,12 @@
from kubeflow.trainer.backends.kubernetes.backend import KubernetesBackend
import kubeflow.trainer.backends.kubernetes.utils as utils
from kubeflow.trainer.constants import constants
from kubeflow.trainer.options import (
Annotations,
Labels,
SpecAnnotations,
SpecLabels,
)
from kubeflow.trainer.test.common import (
DEFAULT_NAMESPACE,
FAILED,
Expand Down Expand Up @@ -274,17 +280,27 @@ def get_train_job(
runtime_name: str,
train_job_name: str = BASIC_TRAIN_JOB_NAME,
train_job_trainer: Optional[models.TrainerV1alpha1Trainer] = None,
labels: Optional[dict[str, str]] = None,
annotations: Optional[dict[str, str]] = None,
spec_labels: Optional[dict[str, str]] = None,
spec_annotations: Optional[dict[str, str]] = None,
) -> models.TrainerV1alpha1TrainJob:
"""
Create a mock TrainJob object with optional trainer configurations.
"""
train_job = models.TrainerV1alpha1TrainJob(
apiVersion=constants.API_VERSION,
kind=constants.TRAINJOB_KIND,
metadata=models.IoK8sApimachineryPkgApisMetaV1ObjectMeta(name=train_job_name),
metadata=models.IoK8sApimachineryPkgApisMetaV1ObjectMeta(
name=train_job_name,
labels=labels,
annotations=annotations,
),
spec=models.TrainerV1alpha1TrainJobSpec(
runtimeRef=models.TrainerV1alpha1RuntimeRef(name=runtime_name),
trainer=train_job_trainer,
labels=spec_labels,
annotations=spec_annotations,
),
)

Expand Down Expand Up @@ -879,6 +895,58 @@ def test_get_runtime_packages(kubernetes_backend, test_case):
},
expected_error=ValueError,
),
TestCase(
name="train with metadata labels and annotations",
expected_status=SUCCESS,
config={
"options": [
Labels({"team": "ml-platform"}),
Annotations({"created-by": "sdk"}),
],
},
expected_output=get_train_job(
runtime_name=TORCH_RUNTIME,
train_job_name=BASIC_TRAIN_JOB_NAME,
labels={"team": "ml-platform"},
annotations={"created-by": "sdk"},
),
),
TestCase(
name="train with spec labels and annotations",
expected_status=SUCCESS,
config={
"options": [
SpecLabels({"app": "training", "version": "v1.0"}),
SpecAnnotations({"prometheus.io/scrape": "true"}),
],
},
expected_output=get_train_job(
runtime_name=TORCH_RUNTIME,
train_job_name=BASIC_TRAIN_JOB_NAME,
spec_labels={"app": "training", "version": "v1.0"},
spec_annotations={"prometheus.io/scrape": "true"},
),
),
TestCase(
name="train with both metadata and spec labels/annotations",
expected_status=SUCCESS,
config={
"options": [
Labels({"owner": "ml-team"}),
Annotations({"description": "Fine-tuning job"}),
SpecLabels({"app": "training", "version": "v1.0"}),
SpecAnnotations({"prometheus.io/scrape": "true"}),
],
},
expected_output=get_train_job(
runtime_name=TORCH_RUNTIME,
train_job_name=BASIC_TRAIN_JOB_NAME,
labels={"owner": "ml-team"},
annotations={"description": "Fine-tuning job"},
spec_labels={"app": "training", "version": "v1.0"},
spec_annotations={"prometheus.io/scrape": "true"},
),
),
],
)
def test_train(kubernetes_backend, test_case):
Expand All @@ -888,8 +956,12 @@ def test_train(kubernetes_backend, test_case):
kubernetes_backend.namespace = test_case.config.get("namespace", DEFAULT_NAMESPACE)
runtime = kubernetes_backend.get_runtime(test_case.config.get("runtime", TORCH_RUNTIME))

options = test_case.config.get("options", [])

train_job_name = kubernetes_backend.train(
runtime=runtime, trainer=test_case.config.get("trainer", None)
runtime=runtime,
trainer=test_case.config.get("trainer", None),
options=options,
)

assert test_case.expected_status == SUCCESS
Expand Down
Loading
Loading