-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChrmArm.Scatterplot.Protein.RNA.R
325 lines (289 loc) · 20.2 KB
/
ChrmArm.Scatterplot.Protein.RNA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
##### Plot scatterplots: gene expression difference for a chrm arm #####
## author: Klaske M. Schukken
## Protein data analysis: Chromosome gain or loss vs neutral ploidy expression difference
## get scatterplot Protein difference per chrm arm
## 200914
## Edited: 201217 -- Normalized data
## Edited: 210106 -- Normalize by Gene, not Cell line. mean=0 only, not SD.
## Edited: 210121 -- no normalization beyond what was already present in the dataset.
## Edited: 210203: use filtered cell lines- only cells with both RNA and Protein data
## also measure changes in protein expression by gain/loss chromosome ARM (not whole chrm)
## Edited 210502: used filtered genes so I only use genes that have minimum of 10 cells per category
library('ggplot2')
library('tidyverse')
library(xlsx)
library(readxl)
library(reshape2)
## Steps:
# Step 1) Get data
# get difference & Pvalue upon chrom gain/loss per gene (filtered cells, filtered genes)
# for all chromosomes, not just diff upon gain/loss. also diff upon other chrm gain/loss
# Get protein info: chromosome arm info
# Step 2) scatter plot protein diff difference (black & red): all vs chrm 5q
# plot RNA & Protein gain & loss: diff per gene, red=chrm arm 5q
##### Step 1: Get Protein difference for all genes per chromosome arm ####
###Step 1: Get data
## Protein changes upon chrm gain
## Get difference data per chrm arm: difference for all proteins (chrm 1-22) upon chrm X gain/loss:
## Compare difference between proteins on chrm, vs not on chrm.
setwd()
### Below files were generated in Protein_filtered_analysis_3cat.R*
## Below data sets are difference in all proteins (12k genes) (not filtered for 10+ cell per condition)
## upon chrm gain and loss. per chrm arm
## sub-Step 1: get all the datasets for chrm Loss
P.Loss.Diff.Chrm1p<-read_csv(file= "ChrmArmLoss.1p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm1q<-read_csv(file= "ChrmArmLoss.1q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm2p<-read_csv(file= "ChrmArmLoss.2p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm2q<-read_csv(file= "ChrmArmLoss.2q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm3p<-read_csv(file= "ChrmArmLoss.3p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm3q<-read_csv(file= "ChrmArmLoss.3q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm4p<-read_csv(file= "ChrmArmLoss.4p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm4q<-read_csv(file= "ChrmArmLoss.4q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm5p<-read_csv(file= "ChrmArmLoss.5p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm5q<-read_csv(file= "ChrmArmLoss.5q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm6p<-read_csv(file= "ChrmArmLoss.6p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm6q<-read_csv(file= "ChrmArmLoss.6q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm7p<-read_csv(file= "ChrmArmLoss.7p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm7q<-read_csv(file= "ChrmArmLoss.7q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm8p<-read_csv(file= "ChrmArmLoss.8p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm8q<-read_csv(file= "ChrmArmLoss.8q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm9p<-read_csv(file= "ChrmArmLoss.9p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm9q<-read_csv(file= "ChrmArmLoss.9q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm10p<-read_csv(file= "ChrmArmLoss.10p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm10q<-read_csv(file= "ChrmArmLoss.10q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm11p<-read_csv(file= "ChrmArmLoss.11p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm11q<-read_csv(file= "ChrmArmLoss.11q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm12p<-read_csv(file= "ChrmArmLoss.12p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm12q<-read_csv(file= "ChrmArmLoss.12q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm13q<-read_csv(file= "ChrmArmLoss.13q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm14q<-read_csv(file= "ChrmArmLoss.14q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm15q<-read_csv(file= "ChrmArmLoss.15q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm16p<-read_csv(file= "ChrmArmLoss.16p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm16q<-read_csv(file= "ChrmArmLoss.16q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm17p<-read_csv(file= "ChrmArmLoss.17p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm17q<-read_csv(file= "ChrmArmLoss.17q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm18p<-read_csv(file= "ChrmArmLoss.18p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm18q<-read_csv(file= "ChrmArmLoss.18q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm19p<-read_csv(file= "ChrmArmLoss.19p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm19q<-read_csv(file= "ChrmArmLoss.19q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm20p<-read_csv(file= "ChrmArmLoss.20p.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm20q<-read_csv(file= "ChrmArmLoss.20q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm21q<-read_csv(file= "ChrmArmLoss.21q.Protein.Diff_min10cells.csv")
P.Loss.Diff.Chrm22q<-read_csv(file= "ChrmArmLoss.22q.Protein.Diff_min10cells.csv")
##sub-Step 2: repeat for chromosome gain changes
P.Gain.Diff.Chrm1p<-read_csv(file= "ChrmArmGain.1p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm1q<-read_csv(file= "ChrmArmGain.1q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm2p<-read_csv(file= "ChrmArmGain.2p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm2q<-read_csv(file= "ChrmArmGain.2q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm3p<-read_csv(file= "ChrmArmGain.3p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm3q<-read_csv(file= "ChrmArmGain.3q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm4p<-read_csv(file= "ChrmArmGain.4p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm4q<-read_csv(file= "ChrmArmGain.4q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm5p<-read_csv(file= "ChrmArmGain.5p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm5q<-read_csv(file= "ChrmArmGain.5q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm6p<-read_csv(file= "ChrmArmGain.6p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm6q<-read_csv(file= "ChrmArmGain.6q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm7p<-read_csv(file= "ChrmArmGain.7p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm7q<-read_csv(file= "ChrmArmGain.7q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm8p<-read_csv(file= "ChrmArmGain.8p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm8q<-read_csv(file= "ChrmArmGain.8q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm9p<-read_csv(file= "ChrmArmGain.9p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm9q<-read_csv(file= "ChrmArmGain.9q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm10p<-read_csv(file= "ChrmArmGain.10p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm10q<-read_csv(file= "ChrmArmGain.10q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm11p<-read_csv(file= "ChrmArmGain.11p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm11q<-read_csv(file= "ChrmArmGain.11q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm12p<-read_csv(file= "ChrmArmGain.12p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm12q<-read_csv(file= "ChrmArmGain.12q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm13q<-read_csv(file= "ChrmArmGain.13q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm14q<-read_csv(file= "ChrmArmGain.14q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm15q<-read_csv(file= "ChrmArmGain.15q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm16p<-read_csv(file= "ChrmArmGain.16p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm16q<-read_csv(file= "ChrmArmGain.16q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm17p<-read_csv(file= "ChrmArmGain.17p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm17q<-read_csv(file= "ChrmArmGain.17q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm18p<-read_csv(file= "ChrmArmGain.18p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm18q<-read_csv(file= "ChrmArmGain.18q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm19p<-read_csv(file= "ChrmArmGain.19p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm19q<-read_csv(file= "ChrmArmGain.19q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm20p<-read_csv(file= "ChrmArmGain.20p.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm20q<-read_csv(file= "ChrmArmGain.20q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm21q<-read_csv(file= "ChrmArmGain.21q.Protein.Diff.all_min10cells.csv")
P.Gain.Diff.Chrm22q<-read_csv(file= "ChrmArmGain.22q.Protein.Diff.all_min10cells.csv")
##### Step 2: Plot Protein expression change per chrm arm gain/loss #####
## Step 2: Plot Protein expression change per chrm arm gain/loss
# Plot mean Difference in expression of Protein between with gain chm vs no gain.
# dotplot. one dot = one Protein Difference (gain - no gain)
# color based on gain or no gain
data=P.Gain.Diff.Chrm5q
testChrmArm="5q"
ggplot(data) +
geom_point(data = subset(data, Chrm.Num.Arm!=testChrmArm),
aes(x = Difference, y = -log2(p.value),
col= Chrm.Num.Arm==testChrmArm))+
geom_point(data = subset(data, Chrm.Num.Arm==testChrmArm),
aes(x = Difference, y = -log2(p.value),
col= Chrm.Num.Arm==testChrmArm))+
xlab(paste0("Protein Expression: \n(Chrm ", testChrmArm, " gain) - (no Chrm gain)"))+
ylab("-log2(p-value)") +
labs(col=paste0("Protein on Chrm Arm ", testChrmArm))+
coord_cartesian(xlim=c(-4,4), ylim=c(0,25))+
scale_color_manual(values=c("Black", "Red"))+
theme_classic()+
theme(axis.text.x = element_text(color="black"),
axis.text.y = element_text(color="black"))+
ggtitle(paste0("Chromosome Arm ", testChrmArm, " gain vs no gain: \nProtein Difference vs. p-value"))
## dimentions: 5x4
## plot.Protein.Chrm5q.Gaun.scatter_min10cells_v3_dodgerblue3
## make loss dodgerblue3, gain =red
data=P.Loss.Diff.Chrm5q
testChrmArm="5q"
ggplot(data) +
geom_point(data = subset(data, Chrm.Num.Arm!=testChrmArm),
aes(x = Difference, y = -log2(p.value),
col= Chrm.Num.Arm==testChrmArm))+
geom_point(data = subset(data, Chrm.Num.Arm==testChrmArm),
aes(x = Difference, y = -log2(p.value),
col= Chrm.Num.Arm==testChrmArm))+
xlab(paste0("Protein Expression: \n(Chrm ", testChrmArm, " loss) - (no Chrm loss)"))+
ylab("-log2(p-value)") +
labs(col=paste0("Protein on Chrm Arm ", testChrmArm))+
coord_cartesian(xlim=c(-4,4), ylim=c(0,25))+
scale_color_manual(values=c("Black", "dodgerblue3"))+
theme_classic()+
theme(axis.text.x = element_text(color="black"),
axis.text.y = element_text(color="black"))+
ggtitle(paste0("Chromosome Arm ", testChrmArm, " loss vs no loss: \nProtein Difference vs. p-value"))
## dimentions: 5x4
## plot.Protein.Chrm5q.Loss.scatter_min10cells_v3_dodgerblue3
## make loss dodgerblue3, gain =red
##### Step 3: Get RNA difference for all genes per chromosome arm ####
### Step 3: Get data
### RNA changes upon chrm gain
### Get difference data per chrm arm: difference for all proteins (chrm 1-22) upon chrm X gain/loss:
### Compare difference between proteins on chrm, vs not on chrm.
# below files were make in RNA_filtered_analysis_3cat.R
# Below data sets are difference in all proteins (12k genes) (not filtered for 10+ cell per condition)
# upon chrm gain and loss. per chrm arm
##Step 3: get all the datasets for chrm Loss
R.Loss.Diff.Chrm1p<-read_csv(file= "ChrmArmLoss.1p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm1q<-read_csv(file= "ChrmArmLoss.1q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm2p<-read_csv(file= "ChrmArmLoss.2p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm2q<-read_csv(file= "ChrmArmLoss.2q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm3p<-read_csv(file= "ChrmArmLoss.3p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm3q<-read_csv(file= "ChrmArmLoss.3q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm4p<-read_csv(file= "ChrmArmLoss.4p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm4q<-read_csv(file= "ChrmArmLoss.4q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm5p<-read_csv(file= "ChrmArmLoss.5p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm5q<-read_csv(file= "ChrmArmLoss.5q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm6p<-read_csv(file= "ChrmArmLoss.6p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm6q<-read_csv(file= "ChrmArmLoss.6q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm7p<-read_csv(file= "ChrmArmLoss.7p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm7q<-read_csv(file= "ChrmArmLoss.7q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm8p<-read_csv(file= "ChrmArmLoss.8p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm8q<-read_csv(file= "ChrmArmLoss.8q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm9p<-read_csv(file= "ChrmArmLoss.9p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm9q<-read_csv(file= "ChrmArmLoss.9q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm10p<-read_csv(file= "ChrmArmLoss.10p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm10q<-read_csv(file= "ChrmArmLoss.10q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm11p<-read_csv(file= "ChrmArmLoss.11p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm11q<-read_csv(file= "ChrmArmLoss.11q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm12p<-read_csv(file= "ChrmArmLoss.12p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm12q<-read_csv(file= "ChrmArmLoss.12q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm13q<-read_csv(file= "ChrmArmLoss.13q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm14q<-read_csv(file= "ChrmArmLoss.14q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm15q<-read_csv(file= "ChrmArmLoss.15q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm16p<-read_csv(file= "ChrmArmLoss.16p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm16q<-read_csv(file= "ChrmArmLoss.16q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm17p<-read_csv(file= "ChrmArmLoss.17p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm17q<-read_csv(file= "ChrmArmLoss.17q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm18p<-read_csv(file= "ChrmArmLoss.18p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm18q<-read_csv(file= "ChrmArmLoss.18q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm19p<-read_csv(file= "ChrmArmLoss.19p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm19q<-read_csv(file= "ChrmArmLoss.19q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm20p<-read_csv(file= "ChrmArmLoss.20p.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm20q<-read_csv(file= "ChrmArmLoss.20q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm21q<-read_csv(file= "ChrmArmLoss.21q.RNA.Diff.all.filtered_min10cells.csv")
R.Loss.Diff.Chrm22q<-read_csv(file= "ChrmArmLoss.22q.RNA.Diff.all.filtered_min10cells.csv")
##sub-Step 2: repeat for chromosome gain changes
R.Gain.Diff.Chrm1p<-read_csv(file= "ChrmArmGain.1p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm1q<-read_csv(file= "ChrmArmGain.1q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm2p<-read_csv(file= "ChrmArmGain.2p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm2q<-read_csv(file= "ChrmArmGain.2q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm3p<-read_csv(file= "ChrmArmGain.3p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm3q<-read_csv(file= "ChrmArmGain.3q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm4p<-read_csv(file= "ChrmArmGain.4p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm4q<-read_csv(file= "ChrmArmGain.4q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm5p<-read_csv(file= "ChrmArmGain.5p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm5q<-read_csv(file= "ChrmArmGain.5q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm6p<-read_csv(file= "ChrmArmGain.6p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm6q<-read_csv(file= "ChrmArmGain.6q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm7p<-read_csv(file= "ChrmArmGain.7p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm7q<-read_csv(file= "ChrmArmGain.7q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm8p<-read_csv(file= "ChrmArmGain.8p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm8q<-read_csv(file= "ChrmArmGain.8q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm9p<-read_csv(file= "ChrmArmGain.9p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm9q<-read_csv(file= "ChrmArmGain.9q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm10p<-read_csv(file= "ChrmArmGain.10p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm10q<-read_csv(file= "ChrmArmGain.10q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm11p<-read_csv(file= "ChrmArmGain.11p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm11q<-read_csv(file= "ChrmArmGain.11q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm12p<-read_csv(file= "ChrmArmGain.12p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm12q<-read_csv(file= "ChrmArmGain.12q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm13q<-read_csv(file= "ChrmArmGain.13q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm14q<-read_csv(file= "ChrmArmGain.14q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm15q<-read_csv(file= "ChrmArmGain.15q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm16p<-read_csv(file= "ChrmArmGain.16p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm16q<-read_csv(file= "ChrmArmGain.16q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm17p<-read_csv(file= "ChrmArmGain.17p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm17q<-read_csv(file= "ChrmArmGain.17q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm18p<-read_csv(file= "ChrmArmGain.18p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm18q<-read_csv(file= "ChrmArmGain.18q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm19p<-read_csv(file= "ChrmArmGain.19p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm19q<-read_csv(file= "ChrmArmGain.19q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm20p<-read_csv(file= "ChrmArmGain.20p.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm20q<-read_csv(file= "ChrmArmGain.20q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm21q<-read_csv(file= "ChrmArmGain.21q.RNA.Diff.all.filtered_min10cells.csv")
R.Gain.Diff.Chrm22q<-read_csv(file= "ChrmArmGain.22q.RNA.Diff.all.filtered_min10cells.csv")
##### Step 4: Scatterplot RNA difference upon chm arm gain: on chrm X vs not on chrm X ####
### Step 2: plot RNA difference upon chm arm gain: on chrm X vs not on chrm X
## Plot RNA expression change per chrm gain/loss
# Plot mean Difference in expression of RNA between with gain chm vs no gain.
# dotplot. one dot = one RNA Difference (gain - no gain)
# color based on gain or no gain
data=R.Gain.Diff.Chrm5q
testChrmArm="5q"
ggplot(data) +
geom_point(aes(x = Difference, y = -log2(p.value), col= Chrm.Num.Arm==testChrmArm))+
geom_point(data = subset(data, Chrm.Num.Arm==testChrmArm),
aes(x = Difference, y = -log2(p.value), col= Chrm.Num.Arm==testChrmArm))+
xlab(paste0("Difference in RNA Expression: \n(Chrm ", testChrmArm, " gain) - (no Chrm gain)"))+
ylab("-log2(p-value)") +
labs(col=paste0("RNA on Chrm Arm ", testChrmArm))+
coord_cartesian(xlim=c(-2,2), ylim=c(0,50)) +
scale_color_manual(values=c("Black", "Red"))+
theme_classic()+
theme(axis.text.x = element_text(color="black"),
axis.text.y = element_text(color="black"))+
ggtitle(paste0("Chromosome Arm ", testChrmArm, " gain vs no gain: \nRNA Difference vs. p-value"))
## dimentions: 5x4
## plot.RNA.Chrm5q.Gain.scatter_min10cells_v3_dodgerblue
## loss= skyblue1, gain = red
data=R.Loss.Diff.Chrm5q
testChrmArm="5q"
ggplot(data) +
geom_point(aes(x = Difference, y = -log2(p.value), col= Chrm.Num.Arm==testChrmArm))+
geom_point(data = subset(data, Chrm.Num.Arm==testChrmArm),
aes(x = Difference, y = -log2(p.value), col= Chrm.Num.Arm==testChrmArm))+
xlab(paste0("Difference in RNA Expression: \n(Chrm ", testChrmArm, " loss) - (no Chrm loss)"))+
ylab("-log2(p-value)") +
labs(col=paste0("RNA on Chrm Arm ", testChrmArm))+
coord_cartesian(xlim=c(-2,2), ylim=c(0,50)) +
scale_color_manual(values=c("Black", "dodgerblue3"))+
theme_classic()+
theme(axis.text.x = element_text(color="black"),
axis.text.y = element_text(color="black"))+
ggtitle(paste0("Chromosome Arm ", testChrmArm, " loss vs no loss: \nRNA Difference vs. p-value"))
## dimentions: 5x4
## plot.RNA.Chrm5q.Loss.scatter_min10cells_v3_dodgerblue
## loss= skyblue1, gain = red