-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrunBESST
executable file
·440 lines (329 loc) · 20.1 KB
/
runBESST
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#!/usr/bin/env python
'''
BESST - Scaffolder for genomic assemblies
Copyright (C) 2013 Kristoffer Sahlin
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
'''
from __future__ import print_function
import sys
import os
import errno
from time import time
import argparse
import shutil
try:
# Python 2
from itertools import izip
except ImportError:
# Python 3
izip = zip
from BESST import errorhandle
from BESST import decide_approach
def mkdir_p(path):
try:
os.makedirs(path)
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else: raise
def ReadInContigseqs(contigfile,contig_filter_length, Information):
cont_dict = {}
k = 0
temp = ''
accession = ''
for line in contigfile:
if line[0] == '>' and k == 0:
accession = line[1:].strip().split()[0]
cont_dict[accession] = ''
k += 1
elif line[0] == '>':
cont_dict[accession] = temp
temp = ''
accession = line[1:].strip().split()[0]
else:
temp += line.strip()
cont_dict[accession] = temp
# for contig in cont_dict.keys():
# print 'Initial length:', len(cont_dict[contig])
print('Initial number of contigs: {}. '.format(len(cont_dict.keys())), file=Information)
if contig_filter_length:
singled_out = 0
for contig in cont_dict.keys():
if len(cont_dict[contig]) < contig_filter_length:
del cont_dict[contig]
singled_out += 1
print('Number of contigs discarded from further analysis (with -filter_contigs set to {0}): {1}'.format(contig_filter_length,singled_out), file=Information)
return(cont_dict)
def main(options):
import pysam
from BESST import Parameter
from BESST import CreateGraph as CG
from BESST import MakeScaffolds as MS
from BESST import GenerateOutput as GO
from BESST import libmetrics
#from BESST import bam_parser
from BESST.diploid import get_haplotype_regions
tot_start = time()
Contigs = {} # contig dict that stores contig objects
Scaffolds = {} # scaffold dict with contig objects for easy fetching of all contigs in a scaffold
small_contigs = {}
small_scaffolds = {}
param = Parameter.parameter() # object containing all parameters (user specified, defaulted and comuted along the way.)
param.scaffold_indexer = 1 # global indicator for scaffolds, used to index scaffolds when they are created
param.multiprocess = options.multiprocess
param.no_score = options.no_score
param.score_cutoff = options.score_cutoff
param.max_extensions = options.max_extensions
param.NO_ILP = options.NO_ILP
param.FASTER_ILP = options.FASTER_ILP
param.dfs_traversal = True if not options.bfs_traversal else False
param.print_scores = options.print_scores
param.min_mapq = options.min_mapq
param.max_contig_overlap = options.max_contig_overlap
param.cov_cutoff = options.covcutoff
param.lower_cov_cutoff = options.lower_covcutoff
if args.devel:
h = guppy.hpy()
initial = h.heap()
print('Initial:\n{0}'.format(initial))
param.development = options.devel
options.output = options.output + '/BESST_output'
mkdir_p(options.output)
if options.plots:
mkdir_p(os.path.join(options.output, 'plots'))
param.information_file = open(options.output + '/Statistics.txt', 'w')
param.plots = options.plots
Information = param.information_file
open(options.output + '/haplotypes.fa', 'w')
#Read in the sequences of the contigs in memory
start = time()
C_dict = ReadInContigseqs(open(options.contigfile, 'r'), options.contig_filter_length, Information)
elapsed = time() - start
print('Time elapsed for reading in contig sequences:' + str(elapsed) + '\n', file=Information)
print('Number of initial contigs:', len(C_dict))
if options.devel:
h = guppy.hpy()
after_ctgs = h.heap()
print('After ctg seqs:\n{0}'.format(after_ctgs))
if options.haplotype:
get_haplotype_regions.main(options.output, C_dict, options.kmer, options.mmer, 0.8)
sys.exit()
#iterate over libraries
param.first_lib = True
param.path_threshold = options.path_threshold
for i in range(len(options.bamfiles)):
param.pass_number = i+1
param.bamfile = options.bamfiles[i]
param.orientation = options.orientation[i] if options.orientation != None else 'fr'
param.mean_ins_size = options.mean[i] if options.mean != None else None
param.ins_size_threshold = options.threshold[i] if options.threshold != None else None
param.edgesupport = options.edgesupport[i] if options.edgesupport != None else None
param.read_len = options.readlen[i] if options.readlen != None else None
param.output_directory = options.output
param.std_dev_ins_size = options.stddev[i] if options.stddev != None else None
param.contig_threshold = options.minsize[i] if options.minsize != None else None
param.hapl_ratio = options.haplratio
param.hapl_threshold = options.haplthreshold
param.detect_haplotype = options.haplotype
param.detect_duplicate = options.duplicate
param.extend_paths = options.extendpaths
print('\nPASS ' + str(i + 1) + '\n\n', file=Information)
#get library statistics
with pysam.Samfile(param.bamfile, 'rb') as bam_file:
#if param.first_lib:
#print bam_file.references
#print map(bam_file.gettid, bam_file.references)
start = time()
param.contig_index = dict(izip(range(len(bam_file.references)), bam_file.references))
libmetrics.get_metrics(bam_file, param, Information)
elapsed = time() - start
print('Time elapsed for getting libmetrics, iteration ' + str(i) + ': ' + str(elapsed) + '\n', file=Information)
if args.devel:
h = guppy.hpy()
after_libmetrics = h.heap()
print('After libmetrics\n{0}\n'.format(after_libmetrics))
#create graph
print('Creating contig graph with library: ', param.bamfile)
start = time()
(G, G_prime) = CG.PE(Contigs, Scaffolds, Information, C_dict, param, small_contigs, small_scaffolds, bam_file) #Create graph, single out too short contigs/scaffolds and store them in F
elapsed = time() - start
print('Total time for CreateGraph-module, iteration ' + str(i) + ': ' + str(elapsed) + '\n', file=Information)
decide_approach.decide_scaffolding_procedure(Scaffolds,small_scaffolds, param)
if args.devel:
h = guppy.hpy()
after_ctg_graph = h.heap()
print('After contig graph\n{0}\n'.format(after_ctg_graph))
#print G, not G == None, not None, None == False
if not G and not param.no_score:
print('0 contigs/super-contigs passed the length criteria of this step. Exiting and printing results.. ')
print('Constructed contig graph. Start BESST algorithm for creating scaffolds. ')
start = time()
MS.Algorithm(G, G_prime, Contigs, small_contigs, Scaffolds, small_scaffolds, Information, param) # Make scaffolds, store the complex areas (consisting of contig/scaffold) in F, store the created scaffolds in Scaffolds, update Contigs
elapsed = time() - start
print('Time elapsed for making scaffolds, iteration ' + str(i) + ': ' + str(elapsed) + '\n', file=Information)
print('Writing out scaffolding results for step', i + 1, ' ...')
F = [] #list of (ordered) lists of tuples containing (contig_name, direction, position, length, sequence). The tuple is a contig within a scaffold and the list of tuples is the scaffold.
for scaffold_ in small_scaffolds:
S_obj = small_scaffolds[scaffold_]
list_of_contigs = S_obj.contigs #list of contig objects contained in scaffold object
F = GO.WriteToF(F, small_contigs, list_of_contigs)
for scaffold_ in Scaffolds.keys(): #iterate over keys in hash, so that we can remove keys while iterating over it
### Go to function and print to F
### Remove Scaf_obj from Scaffolds and Contig_obj from contigs
S_obj = Scaffolds[scaffold_]
list_of_contigs = S_obj.contigs # List of contig objects contained in scaffold object
F = GO.WriteToF(F, Contigs, list_of_contigs)
GO.PrintOutput(F, Information, param.output_directory, param, i + 1)
if not options.separate_repeats:
destination = open("{0}/pass{1}/Scaffolds_pass{1}.fa".format(param.output_directory, str(i+1) ), 'wb')
#destination = open(outfile,'wb')
shutil.copyfileobj(open("{0}/pass{1}/Scaffolds-pass{1}.fa".format(param.output_directory, str(i+1) ), 'rb'), destination)
shutil.copyfileobj(open("{0}/repeats.fa".format(param.output_directory, str(i+1) ), 'rb'), destination)
destination.close()
os.remove( "{0}/pass{1}/Scaffolds-pass{1}.fa".format(param.output_directory, str(i+1)) )
all_parameter_settings = param.get_params()
print(Information, all_parameter_settings, file=Information)
param.first_lib = False #not the first lib any more
if not options.separate_repeats:
os.remove( "{0}/repeats.fa".format(param.output_directory ) )
### Calculate stats for last scaffolding step
scaf_lengths = [Scaffolds[scaffold_].s_length for scaffold_ in Scaffolds.keys()]
sorted_lengths = sorted(scaf_lengths, reverse=True)
scaf_lengths_small = [small_scaffolds[scaffold_].s_length for scaffold_ in small_scaffolds.keys()]
sorted_lengths_small = sorted(scaf_lengths_small, reverse=True)
N50, L50 = CG.CalculateStats(sorted_lengths, sorted_lengths_small, param, Information)
param.current_L50 = L50
param.current_N50 = N50
elapsed = time() - tot_start
print('Total time for scaffolding: ' + str(elapsed) + '\n', file=Information)
print('Finished\n\n ')
return()
parser = argparse.ArgumentParser(prog='BESST', description="BESST - scaffolder for genomic assemblies.", epilog='''Source code and manual: http://github.com/ksahlin/BESST\n\nPlease cite:\nSahlin K, Vezzi F, Nystedt B, Lundeberg J, Arvestad L (2014) BESST--efficient scaffolding of large fragmented assemblies. BMC Bioinformatics 15, 281\n''', formatter_class=argparse.RawDescriptionHelpFormatter)
required = parser.add_argument_group('Required arguments')
libstats = parser.add_argument_group('Library information', 'Library parameters that can be set, e.g., read length, insert size mean/std_dev, coverage etc.')
haplotypes = parser.add_argument_group('Ploidy', 'Options involving detection of split allele contigs in diploid assemblies.')
parameters = parser.add_argument_group('Parameters/variables/threshold involved in BESST.')
other = parser.add_argument_group('Various other parameters')
group = parser.add_mutually_exclusive_group(required=False)
## required
required.add_argument("-c", dest="contigfile", type=str, required=True,
help="Fasta file containing contigs.")
required.add_argument("-f", dest="bamfiles", type=str, nargs='+', required=True,
help="Path(s) to bamfile(s).")
required.add_argument("-orientation", dest="orientation", type=str, nargs='+', required=True,
help="Mapped orientation for each library given with -f option. Valid input is either fr (forward reverse orientation) or rf (reverse forward orientation).")
## libstats
libstats.add_argument("-r", dest="readlen", type=int, nargs='+',
help="Mean read length of libraries. ")
libstats.add_argument("-m", dest="mean", type=float, nargs='+',
help="Mean insert size of libraries.")
libstats.add_argument("-s", dest="stddev", type=float, nargs='+',
help="Estimated standard deviation of libraries.")
libstats.add_argument("-z", dest="covcutoff", type=int, default=None,
help="User specified coverage cutoff. (Manually filter \
out contigs with coverage over this value)")
libstats.add_argument("-z_min", dest="lower_covcutoff", type=float, default=0.001,
help="User specified coverage cutoff. (Manually filter \
out contigs with coverage under this value)")
# potentially add these options but we need one value for each library, otherwise implement this in a better way..
# libstats.add_argument("--mean_coverage", dest="mean_coverage", type=float, default=None,
# help="Specifies mean coverage. Better to set if coverage histogram is tricky to get the peak from (check coverage histogram with -plots)")
# libstats.add_argument("--stddev_coverage", dest="stddev_coverage", type=float, default=None,
# help="Specifies stddev coverage. Better to set if coverage histogram is tricky to get the peak from (check coverage histogram with -plots)")
## parameters
parameters.add_argument("-T", dest="threshold", type=int, nargs='+',
help="Threshold value filter out reads that are mapped too far apart given insert size. ")
parameters.add_argument("-e", dest="edgesupport", type=int, nargs='+',
help="Threshold value for the least nr of links that is needed to create an edge. Default for all libs: Inferred by BESST (see value in output in Statistics.txt). ")
parameters.add_argument("-k", dest="minsize", type=int, nargs='+',
help="Contig size threshold for the library (all contigs below this size is discarded from the \
'large contigs' scaffolding, but included in pathfinding). Default: Set to same as -T parameter")
parameters.add_argument("-filter_contigs", dest="contig_filter_length", type=int, default=None,
help="Contigs under this size is discarded from all scaffolding (including pathfinding).\
they are also not included in the resulting scaffold output fasta file and any\
of the other files as well as all statistics. Default: All contigs are included")
parameters.add_argument("--min_mapq", dest="min_mapq", type=int, default=11,
help="Lowest mapping quality allowed in order to use the read pair (both reads needs to have equal or bigger mapq than this value). This value is compared to the mapping quality column in the BAM file. ")
parameters.add_argument("--iter", dest="path_threshold", type=int, default=100000,
help="The number of iterations performed in breadth first search for placing smaller contigs. ")
parameters.add_argument("--score_cutoff", dest="score_cutoff", type=float, default=1.5,
help="Only store paths with score larger than score_cutoff. ")
parameters.add_argument("--max_extensions", dest="max_extensions", type=int,
help="Maximum number of (large) scaffolds to search for paths extensions with. ")
## related to scaffolding high heterozygozity assemblies with lots of split haplotype contigs
haplotypes.add_argument("-a", dest="haplratio", type=float, default=1.3,
help="Maximum length ratio for merging of haplotypic regions.")
haplotypes.add_argument("-b", dest="haplthreshold", type=int, default=3,
help="Number of standard deviations over mean/2 of coverage to allow for clasification of haplotype.\
Example: contigs with under mean/2 + 3sigma are indicated as potential haplotypes (tested later) \
if -b 3")
other.add_argument("-K", dest="kmer", type=int, default=50,
help="k-mer size used in de brujin graph for obtaining contigs in assembly, default 50")
other.add_argument("-M", dest="mmer", type=int, default=40,
help="m-mer usted for creating connection graph. Should be set lower than k-mer size ")
haplotypes.add_argument("-g", dest="haplotype", action="store_true",
help="Haplotype detection function, default = off")
## other
other.add_argument("-o", dest="output", type=str, default='.',
help="Path to output directory. BESST will create a folder named 'BESST_output' in the directory given by the path.")
other.add_argument("-d", dest='duplicate' , action="store_false",
help="Deactivate sequencing duplicates detection")
group.add_argument("-y", dest='extendpaths', action="store_false",
help="Deactivate pathfinder module for including smaller contigs.")
other.add_argument("-q", dest="multiprocess", action="store_true",
help="Parallellize work load of path finder module in case of multiple processors available.\
",)
group.add_argument("--no_score", dest="no_score", action="store_true",
help="Statistical scoring is not performed. BESST instead searches for paths between contigs.\
",)
other.add_argument("-devel", action="store_true",
help="Run in development mode (bug checking and memory usage etc.)")
other.add_argument("-plots", action="store_true",
help="Plot coverage, histograms of scores e.t.c.")
other.add_argument("--separate_repeats", dest="separate_repeats", action="store_true",
help="Separates contigs classified as repeats by BESST into a file 'repeats.fa'. They are \
not included in the main scaffolding output file with this flag specified.")
parameters.add_argument("--NO_ILP", dest="NO_ILP", action="store_true",
help="Warning: Do not use this option! This option is included only for benchmarking purposes of old BESST algorithm. This option will give poor results as it mimics earlier versions of BESST.")
parameters.add_argument("--FASTER_ILP", dest="FASTER_ILP", action="store_true",
help="Faster but worse performing heuristic solution to solving ILPs. May be used if BESST is too slow. However, lowering --iter is usually more effective to reduce scaffolding time.")
parameters.add_argument("--print_scores", dest="print_scores", action="store_true",
help="Print BESST scores on edges in the Scaffolding graph.")
other.add_argument("--dfs_traversal", dest="dfs_traversal", action="store_true",
help="Depth first search with DP in the contig graph (default).")
other.add_argument("--bfs_traversal", dest="bfs_traversal", action="store_true",
help="Choose a breadth first search in the contig graph. Default is the new depth first search with a DP approch that seems to outperform\
previous traversals. This option is kept for evaluation but is not reccomended to specify.")
other.add_argument("-max_contig_overlap", dest="max_contig_overlap", type=int, default=200,
help="BESST checks for overlapping ends in contigs that are adjacent in a scaffold. This parameter sets the maximum identical overlap to search for, default is 200. ")
other.add_argument('--version', action='version', version='%(prog)s 2.2.8')
if len(sys.argv) == 1:
sys.argv.append('-h')
args = parser.parse_args()
errorhandle.check_module('mathstats')
errorhandle.parse_check(args, parser)
if args.devel:
import guppy
if args.plots:
try:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
except ImportError:
args.plots = False
##
# Call BESST algorithm
main(args)
if args.devel:
h = guppy.hpy()
at_end= h.heap()
print('At end:\n{0}\n'.format(at_end))