forked from hpatches/hpatches-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcustom_impl.py
134 lines (94 loc) · 3.7 KB
/
custom_impl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import cv2
import numpy as np
import skimage.feature
from other_algorithms.asift import affine_detect
from other_algorithms.susan import susanCorner
# DETECTORS
class HarrisMataHarris():
'''
Wrapper for the OpenCV implementation of the Harris detector.
'''
def __init__(self, blockSize=2, ksize=3, k=0.04, borderType=cv2.BORDER_DEFAULT):
# self.src = src
self.blockSize = blockSize
self.ksize = ksize
self.k = k
self.borderType = borderType
def detect(self, img, mask=None):
'''
Keypoint detector method. The threshold is set to 0.01.
The parameter mask is set to keep standardized inputs for the detect method in the openCv implementations.
'''
keypoints = []
# already taking care of this in the implementation
# if len(img.shape) == 3:
# img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
dst = cv2.cornerHarris(img,self.blockSize,self.ksize,self.k)
indexes = np.where(dst>0.01*dst.max())
for i in range(len(indexes[0])):
keypoints.append(cv2.KeyPoint(x=int(indexes[1][i]), y=int(indexes[0][i]), _size=0))
return keypoints
class ShiTomasi():
'''
other parameters are left to the default OpenCv parameters
'''
def __init__(self, maxCorners=1000000, qualityLevel=0.01,minDistance=10):
self.maxCorners = maxCorners
self.qualityLevel = qualityLevel
self.minDistance = minDistance
def detect(self, img, mask=None):
keypoints = []
# Already taken care of in the implementation
# if len(img.shape) == 3:
# img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
corners = cv2.goodFeaturesToTrack(img,
self.maxCorners,
self.qualityLevel,
self.minDistance)
corners = np.int0(corners)
corners = corners[:,0,:]
for i in range(corners.shape[0]):
keypoints.append(cv2.KeyPoint(x=int(corners[i,0]),
y=int(corners[i,1]),
_size=0))
return keypoints
class CensureClass():
def detect(self, img, mask=None):
keypoints = []
censure = skimage.feature.CENSURE()
censure.detect(img)
for i in range(censure.keypoints.shape[0]):
keypoints.append(cv2.KeyPoint(x=censure.keypoints[i,1],
y=censure.keypoints[i,0],
_size=0))
return keypoints
class SusanClass():
def detect(self, img, mask=None):
keypoints = []
kp = susanCorner(img)
kp = np.where(kp>0)
for i in range(len(kp[0])):
keypoints.append(cv2.KeyPoint(x=kp[0][i],
y=kp[1][i],
_size=0))
return keypoints
# DESCRIPTORS
class RootSIFT:
def __init__(self, eps=1e-7):
self.eps = eps
def compute(self, image, kp):
sift = cv2.xfeatures2d.SIFT_create()
kp, des = sift.compute(image, kp)
if len(kp) == 0:
return kp, np.array([])
# apply the Hellinger kernel by first L1-normalizing and taking the
# square-root
des /= (des.sum(axis=1, keepdims=True) + self.eps)
des = np.sqrt(des)
#descs /= (np.linalg.norm(descs, axis=1, ord=2) + eps)
return kp, des
# DETECTOR + DESCRIPTOR
class ASIFTClass():
def detectAndCompute(self, img, mask=None):
kp, des = affine_detect(cv2.xfeatures2d.SIFT_create(), img)
return kp, des