-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
233 lines (164 loc) · 6.63 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: kneehit
"""
#%%
from opensfm import dataset
from opensfm import exif
import logging
import copy
import time
from timeit import default_timer as timer
from opensfm.context import parallel_map
from opensfm import io
from opensfm import log
from opensfm import dense
import numpy as np
from opensfm import matching
from opensfm import tracking
from opensfm import reconstruction
from opensfm import mesh
from opensfm import types
from utils import _extract_exif, detect, detect_features_report, match_features_report, tracks_report
from utils import undistort_reconstruction
dataset_path = 'dataset/flash'
log.setup()
logger = logging.getLogger('reconstruction')
logging.getLogger("reconstruction").setLevel(logging.INFO)
#%%
def extract_metadata( dataset_path):
start = time.time()
data = dataset.DataSet(dataset_path)
exif_overrides = {}
if data.exif_overrides_exists():
exif_overrides = data.load_exif_overrides()
camera_models = {}
for image in data.images():
if data.exif_exists(image):
logging.info('Loading existing EXIF for {}'.format(image))
d = data.load_exif(image)
else:
logging.info('Extracting EXIF for {}'.format(image))
d = _extract_exif(image, data)
if image in exif_overrides:
d.update(exif_overrides[image])
data.save_exif(image, d)
if d['camera'] not in camera_models:
camera = exif.camera_from_exif_metadata(d, data)
camera_models[d['camera']] = camera
# Override any camera specified in the camera models overrides file.
if data.camera_models_overrides_exists():
overrides = data.load_camera_models_overrides()
if "all" in overrides:
for key in camera_models:
camera_models[key] = copy.copy(overrides["all"])
camera_models[key].id = key
else:
for key, value in overrides.items():
camera_models[key] = value
data.save_camera_models(camera_models)
end = time.time()
with open(data.profile_log(), 'a') as fout:
fout.write('extract_metadata: {0}\n'.format(end - start))
def detect_features(dataset_path):
data = dataset.DataSet(dataset_path)
images = data.images()
arguments = [(image, data) for image in images]
start = timer()
processes = data.config['processes']
parallel_map(detect, arguments, processes, 1)
end = timer()
with open(data.profile_log(), 'a') as fout:
fout.write('detect_features: {0}\n'.format(end - start))
detect_features_report(data, end - start)
def match_features(dataset_path):
data = dataset.DataSet(dataset_path)
images = data.images()
start = timer()
pairs_matches, preport = matching.match_images(data, images, images)
matching.save_matches(data, images, pairs_matches)
end = timer()
with open(data.profile_log(), 'a') as fout:
fout.write('match_features: {0}\n'.format(end - start))
match_features_report(data, preport, list(pairs_matches.keys()), end - start)
def create_tracks(dataset_path):
data = dataset.DataSet(dataset_path)
start = timer()
features_tracks, colors = tracking.load_features(data, data.images())
features_end = timer()
matches = tracking.load_matches(data, data.images())
matches_end = timer()
tracks_manager = tracking.create_tracks_manager(features_tracks, colors, matches,
data.config)
tracks_end = timer()
data.save_tracks_manager(tracks_manager)
end = timer()
with open(data.profile_log(), 'a') as fout:
fout.write('create_tracks: {0}\n'.format(end - start))
tracks_report(data,
tracks_manager,
features_end - start,
matches_end - features_end,
tracks_end - matches_end)
def reconstruct(dataset_path):
start = time.time()
data = dataset.DataSet(dataset_path)
tracks_manager = data.load_tracks_manager()
report, reconstructions = reconstruction.\
incremental_reconstruction(data, tracks_manager)
end = time.time()
with open(data.profile_log(), 'a') as fout:
fout.write('reconstruct: {0}\n'.format(end - start))
data.save_reconstruction(reconstructions)
data.save_report(io.json_dumps(report), 'reconstruction.json')
def create_mesh(dataset_path):
start = time.time()
data = dataset.DataSet(dataset_path)
tracks_manager = data.load_tracks_manager()
reconstructions = data.load_reconstruction()
all_shot_ids = set(tracks_manager.get_shot_ids())
for i, r in enumerate(reconstructions):
for shot in r.shots.values():
if shot.id in all_shot_ids:
vertices, faces = mesh.triangle_mesh(
shot.id, r, tracks_manager, data)
shot.mesh = types.ShotMesh()
shot.mesh.vertices = vertices
shot.mesh.faces = faces
data.save_reconstruction(reconstructions,
filename='reconstruction.meshed.json',
minify=True)
end = time.time()
with open(data.profile_log(), 'a') as fout:
fout.write('mesh: {0}\n'.format(end - start))
def undistort(dataset_path,reconstruction = None,tracks = None,reconstruction_index = 0,
output = 'undistorted',):
data = dataset.DataSet(dataset_path)
udata = dataset.UndistortedDataSet(data, output)
reconstructions = data.load_reconstruction(reconstruction)
if data.tracks_exists(tracks):
tracks_manager = data.load_tracks_manager(tracks)
else:
tracks_manager = None
if reconstructions:
r = reconstructions[reconstruction_index]
undistort_reconstruction(tracks_manager, r, data, udata)
def compute_depthmaps(dataset_path, subfolder = 'undistorted', interactive = False):
data = dataset.DataSet(dataset_path)
udata = dataset.UndistortedDataSet(data, subfolder)
data.config['interactive'] = interactive
reconstructions = udata.load_undistorted_reconstruction()
tracks_manager = udata.load_undistorted_tracks_manager()
dense.compute_depthmaps(udata, tracks_manager, reconstructions[0])
#%%
def main(dataset_path):
extract_metadata(dataset_path)
detect_features(dataset_path)
match_features(dataset_path)
create_tracks(dataset_path)
reconstruct(dataset_path)
create_mesh(dataset_path)
undistort(dataset_path)
compute_depthmaps(dataset_path)
main(dataset_path)