|
| 1 | +import numpy as np |
| 2 | +import pandas as pd |
| 3 | +import random |
| 4 | +import math,time,sys |
| 5 | +from matplotlib import pyplot |
| 6 | +from datetime import datetime |
| 7 | +from sklearn.neighbors import KNeighborsClassifier |
| 8 | +from sklearn.model_selection import train_test_split |
| 9 | + |
| 10 | +#================================================================== |
| 11 | +def sigmoid1(gamma): #convert to probability |
| 12 | + if gamma < 0: |
| 13 | + return 1 - 1/(1 + math.exp(gamma)) |
| 14 | + else: |
| 15 | + return 1/(1 + math.exp(-gamma)) |
| 16 | + |
| 17 | +def sigmoid1i(gamma): #convert to probability |
| 18 | + gamma = -gamma |
| 19 | + if gamma < 0: |
| 20 | + return 1 - 1/(1 + math.exp(gamma)) |
| 21 | + else: |
| 22 | + return 1/(1 + math.exp(-gamma)) |
| 23 | + |
| 24 | +def sigmoid2(gamma): |
| 25 | + gamma /= 2 |
| 26 | + if gamma < 0: |
| 27 | + return 1 - 1/(1 + math.exp(gamma)) |
| 28 | + else: |
| 29 | + return 1/(1 + math.exp(-gamma)) |
| 30 | + |
| 31 | +def sigmoid3(gamma): |
| 32 | + gamma /= 3 |
| 33 | + if gamma < 0: |
| 34 | + return 1 - 1/(1 + math.exp(gamma)) |
| 35 | + else: |
| 36 | + return 1/(1 + math.exp(-gamma)) |
| 37 | + |
| 38 | +def sigmoid4(gamma): |
| 39 | + gamma *= 2 |
| 40 | + if gamma < 0: |
| 41 | + return 1 - 1/(1 + math.exp(gamma)) |
| 42 | + else: |
| 43 | + return 1/(1 + math.exp(-gamma)) |
| 44 | + |
| 45 | + |
| 46 | +def Vfunction1(gamma): |
| 47 | + return abs(np.tanh(gamma)) |
| 48 | + |
| 49 | +def Vfunction2(gamma): |
| 50 | + val = (math.pi)**(0.5) |
| 51 | + val /= 2 |
| 52 | + val *= gamma |
| 53 | + val = math.erf(val) |
| 54 | + return abs(val) |
| 55 | + |
| 56 | +def Vfunction3(gamma): |
| 57 | + val = 1 + gamma*gamma |
| 58 | + val = math.sqrt(val) |
| 59 | + val = gamma/val |
| 60 | + return abs(val) |
| 61 | + |
| 62 | +def Vfunction4(gamma): |
| 63 | + val=(math.pi/2)*gamma |
| 64 | + val=np.arctan(val) |
| 65 | + val=(2/math.pi)*val |
| 66 | + return abs(val) |
| 67 | + |
| 68 | +def initialize(popSize,dim): |
| 69 | + population=np.zeros((popSize,dim)) |
| 70 | + minn = 1 |
| 71 | + maxx = math.floor(0.8*dim) |
| 72 | + if maxx<minn: |
| 73 | + minn = maxx |
| 74 | + |
| 75 | + for i in range(popSize): |
| 76 | + random.seed(i**3 + 10 + time.time() ) |
| 77 | + no = random.randint(minn,maxx) |
| 78 | + if no == 0: |
| 79 | + no = 1 |
| 80 | + random.seed(time.time()+ 100) |
| 81 | + pos = random.sample(range(0,dim-1),no) |
| 82 | + for j in pos: |
| 83 | + population[i][j]=1 |
| 84 | + |
| 85 | + # print(population[i]) |
| 86 | + return population |
| 87 | + |
| 88 | +def fitness(solution, trainX, testX, trainy, testy): |
| 89 | + cols=np.flatnonzero(solution) |
| 90 | + val=1 |
| 91 | + if np.shape(cols)[0]==0: |
| 92 | + return val |
| 93 | + clf=KNeighborsClassifier(n_neighbors=5) |
| 94 | + train_data=trainX[:,cols] |
| 95 | + test_data=testX[:,cols] |
| 96 | + clf.fit(train_data,trainy) |
| 97 | + val=1-clf.score(test_data,testy) |
| 98 | + |
| 99 | + #in case of multi objective [] |
| 100 | + set_cnt=sum(solution) |
| 101 | + set_cnt=set_cnt/np.shape(solution)[0] |
| 102 | + val=omega*val+(1-omega)*set_cnt |
| 103 | + return val |
| 104 | + |
| 105 | +def allfit(population, trainX, testX, trainy, testy): |
| 106 | + x=np.shape(population)[0] |
| 107 | + acc=np.zeros(x) |
| 108 | + for i in range(x): |
| 109 | + acc[i]=fitness(population[i],trainX,testX,trainy,testy) |
| 110 | + #print(acc[i]) |
| 111 | + return acc |
| 112 | + |
| 113 | +def toBinary(solution,dimension): |
| 114 | + # print("continuous",solution) |
| 115 | + Xnew = np.zeros(np.shape(solution)) |
| 116 | + for i in range(dimension): |
| 117 | + temp = Vfunction3(abs(solution[i])) |
| 118 | + |
| 119 | + random.seed(time.time()+i) |
| 120 | + if temp > random.random(): # sfunction |
| 121 | + Xnew[i] = 1 |
| 122 | + else: |
| 123 | + Xnew[i] = 0 |
| 124 | + # if temp > 0.5: # vfunction |
| 125 | + # Xnew[i] = 1 - abs(solution[i]) |
| 126 | + # else: |
| 127 | + # Xnew[i] = abs(solution[i]) |
| 128 | + # print("binary",Xnew) |
| 129 | + return Xnew |
| 130 | + |
| 131 | +def toBinaryX(solution,dimension,oldsol,trainX, testX, trainy, testy): |
| 132 | + Xnew = np.zeros(np.shape(solution)) |
| 133 | + Xnew1 = np.zeros(np.shape(solution)) |
| 134 | + Xnew2 = np.zeros(np.shape(solution)) |
| 135 | + for i in range(dimension): |
| 136 | + temp = sigmoid1(abs(solution[i])) |
| 137 | + random.seed(time.time()+i) |
| 138 | + r1 = random.random() |
| 139 | + if temp > r1: # sfunction |
| 140 | + Xnew1[i] = 1 |
| 141 | + else: |
| 142 | + Xnew1[i] = 0 |
| 143 | + |
| 144 | + temp = sigmoid1i(abs(solution[i])) |
| 145 | + if temp > r1: # sfunction |
| 146 | + Xnew2[i] = 1 |
| 147 | + else: |
| 148 | + Xnew2[i] = 0 |
| 149 | + |
| 150 | + fit1 = fitness(Xnew1,trainX,testX,trainy,testy) |
| 151 | + fit2 = fitness(Xnew2,trainX,testX,trainy,testy) |
| 152 | + fitOld = fitness(oldsol,trainX,testX,trainy,testy) |
| 153 | + if fit1<fitOld or fit2<fitOld: |
| 154 | + if fit1 < fit2: |
| 155 | + Xnew = Xnew1.copy() |
| 156 | + else: |
| 157 | + Xnew = Xnew2.copy() |
| 158 | + return Xnew |
| 159 | + # else: CROSSOVER |
| 160 | + Xnew3 = Xnew1.copy() |
| 161 | + Xnew4 = Xnew2.copy() |
| 162 | + for i in range(dimension): |
| 163 | + random.seed(time.time() + i) |
| 164 | + r2 = random.random() |
| 165 | + if r2>0.5: |
| 166 | + tx = Xnew3[i] |
| 167 | + Xnew3[i] = Xnew4[i] |
| 168 | + Xnew4[i] = tx |
| 169 | + fit1 = fitness(Xnew3,trainX,testX,trainy,testy) |
| 170 | + fit2 = fitness(Xnew4,trainX,testX,trainy,testy) |
| 171 | + if fit1<fit2: |
| 172 | + return Xnew3 |
| 173 | + else: |
| 174 | + return Xnew4 |
| 175 | + # print("binary",Xnew) |
| 176 | + |
| 177 | + |
| 178 | +#================================================================== |
| 179 | +def goldenratiomethod(dataset,popSize,maxIter): |
| 180 | + |
| 181 | + #--------------------------------------------------------------------- |
| 182 | + #I know I should not put not it here, but still ... |
| 183 | + df=pd.read_csv(dataset) |
| 184 | + (a,b)=np.shape(df) |
| 185 | + print(a,b) |
| 186 | + data = df.values[:,0:b-1] |
| 187 | + label = df.values[:,b-1] |
| 188 | + dimension = np.shape(data)[1] #particle dimension |
| 189 | + #--------------------------------------------------------------------- |
| 190 | + |
| 191 | + cross = 5 |
| 192 | + test_size = (1/cross) |
| 193 | + trainX, testX, trainy, testy = train_test_split(data, label,stratify=label ,test_size=test_size) |
| 194 | + |
| 195 | + |
| 196 | + clf=KNeighborsClassifier(n_neighbors=5) |
| 197 | + clf.fit(trainX,trainy) |
| 198 | + val=clf.score(testX,testy) |
| 199 | + whole_accuracy = val |
| 200 | + print("Total Acc: ",val) |
| 201 | + |
| 202 | + x_axis = [] |
| 203 | + y_axis = [] |
| 204 | + population = initialize(popSize,dimension) |
| 205 | + BESTANS = np.zeros(np.shape(population[0])) |
| 206 | + BESTACC = 1000 |
| 207 | + |
| 208 | + start_time = datetime.now() |
| 209 | + |
| 210 | + for currIter in range(1,maxIter): |
| 211 | + |
| 212 | + fitList = allfit(population,trainX,testX,trainy,testy) |
| 213 | + y_axis.append(min(fitList)) |
| 214 | + x_axis.append(currIter) |
| 215 | + worstInx = np.argmax(fitList) |
| 216 | + fitWorst = max(fitList) |
| 217 | + Xworst = population[worstInx].copy() |
| 218 | + |
| 219 | + Xave = population.sum(axis=0) |
| 220 | + Xave = np.divide(Xave,popSize) |
| 221 | + # for x in Xave: |
| 222 | + # print("%.2f"%x,end=',') |
| 223 | + # print() |
| 224 | + XaveBin= toBinary(Xave,dimension) |
| 225 | + FITave = fitness(XaveBin, trainX, testX, trainy, testy) |
| 226 | + if FITave<fitWorst: |
| 227 | + population[worstInx] = XaveBin.copy() |
| 228 | + fitList[worstInx] = FITave |
| 229 | + |
| 230 | + |
| 231 | + |
| 232 | + for i in range(popSize): |
| 233 | + Xi = population[i].copy() |
| 234 | + j = i |
| 235 | + while j == i: |
| 236 | + random.seed(time.time()+j) |
| 237 | + j = random.randint(0, popSize-1) |
| 238 | + Xj = population[j].copy() |
| 239 | + FITi = fitList[i] |
| 240 | + FITj = fitList[j] |
| 241 | + |
| 242 | + Xave = population.sum(axis=0) |
| 243 | + Xave = np.subtract(Xave,population[i]) |
| 244 | + Xave = np.subtract(Xave,population[j]) |
| 245 | + Xave = np.divide(Xave,(popSize-2)) |
| 246 | + XaveBin = toBinary(Xave,dimension) |
| 247 | + FITave = fitness(XaveBin, trainX, testX, trainy, testy) |
| 248 | + # print(i,j,FITi,FITj,FITave) |
| 249 | + Xbest = np.zeros(np.shape(Xi)) |
| 250 | + Xmedium = np.zeros(np.shape(Xi)) |
| 251 | + Xworst = np.zeros(np.shape(Xi)) |
| 252 | + |
| 253 | + if FITi < FITj < FITave: |
| 254 | + Xbest = Xi.copy() |
| 255 | + Xmedium = Xj.copy() |
| 256 | + Xworst = Xave.copy() |
| 257 | + elif FITi < FITave < FITj: |
| 258 | + Xbest = Xi.copy() |
| 259 | + Xmedium = Xave.copy() |
| 260 | + Xworst = Xj.copy() |
| 261 | + elif FITj < FITi < FITave: |
| 262 | + Xbest = Xj.copy() |
| 263 | + Xmedium = Xi.copy() |
| 264 | + Xworst = Xave.copy() |
| 265 | + elif FITj < FITave < FITi: |
| 266 | + Xbest = Xj.copy() |
| 267 | + Xmedium = Xave.copy() |
| 268 | + Xworst = Xi.copy() |
| 269 | + elif FITave < FITi < FITj: |
| 270 | + Xbest = Xave.copy() |
| 271 | + Xmedium = Xi.copy() |
| 272 | + Xworst = Xj.copy() |
| 273 | + elif FITave < FITj < FITi: |
| 274 | + Xbest = Xave.copy() |
| 275 | + Xmedium = Xj.copy() |
| 276 | + Xworst = Xi.copy() |
| 277 | + |
| 278 | + Xt = np.subtract(Xmedium,Xworst) |
| 279 | + T = currIter/maxIter |
| 280 | + Ft = (golden/(5**0.5)) * (golden**T - (1 - golden)**T) |
| 281 | + random.seed(19*time.time() + 10.01) |
| 282 | + Xnew = np.multiply(Xbest,(1-Ft)) + np.multiply(Xt,random.random()*Ft) |
| 283 | + Xnew = toBinaryX(Xnew,dimension,population[i],trainX, testX, trainy, testy) |
| 284 | + FITnew = fitness(Xnew, trainX, testX, trainy, testy) |
| 285 | + # if FITnew < fitList[i]: |
| 286 | + # print(i,j,"updated2") |
| 287 | + population[i] = Xnew.copy() |
| 288 | + fitList[i] = FITnew |
| 289 | + |
| 290 | + #second phase |
| 291 | + worstInx = np.argmax(fitList) |
| 292 | + fitWorst = max(fitList) |
| 293 | + Xworst = population[worstInx].copy() |
| 294 | + bestInx = np.argmin(fitList) |
| 295 | + fitBest = min(fitList) |
| 296 | + Xbest = population[bestInx].copy() |
| 297 | + for i in range(popSize): |
| 298 | + Xi = population[i].copy() |
| 299 | + random.seed(29*time.time() + 391.97 ) |
| 300 | + Xnew = np.add(Xi , np.multiply(np.subtract(Xbest,Xworst),random.random()*(1/golden)) ) |
| 301 | + Xnew = toBinaryX(Xnew,dimension,population[i],trainX, testX, trainy, testy) |
| 302 | + FITnew = fitness(Xnew, trainX, testX, trainy, testy) |
| 303 | + # if FITnew < fitList[i]: |
| 304 | + fitList[i] = FITnew |
| 305 | + population[i] = Xnew.copy() |
| 306 | + |
| 307 | + if fitList[i]< BESTACC: |
| 308 | + BESTACC = fitList[i] |
| 309 | + BESTANS = population[i].copy() |
| 310 | + |
| 311 | + # pyplot.plot(x_axis,y_axis) |
| 312 | + # pyplot.show() |
| 313 | + # bestInx = np.argmin(fitList) |
| 314 | + # fitBest = min(fitList) |
| 315 | + # Xbest = population[bestInx].copy() |
| 316 | + cols = np.flatnonzero(BESTANS) |
| 317 | + val = 1 |
| 318 | + if np.shape(cols)[0]==0: |
| 319 | + return Xbest |
| 320 | + clf = KNeighborsClassifier(n_neighbors=5) |
| 321 | + train_data = trainX[:,cols] |
| 322 | + test_data = testX[:,cols] |
| 323 | + clf.fit(train_data,trainy) |
| 324 | + val = clf.score(test_data,testy) |
| 325 | + return BESTANS,val |
| 326 | + |
| 327 | + |
| 328 | + |
| 329 | + |
| 330 | +#================================================================== |
| 331 | +golden = (1 + 5 ** 0.5) / 2 |
| 332 | +popSize = 10 |
| 333 | +maxIter = 10 |
| 334 | +omega = 1 |
| 335 | +datasetList = ["BreastEW"] |
| 336 | +datasetList = ["Breastcancer", "BreastEW", "CongressEW", "Exactly", "Exactly2", "HeartEW", "Ionosphere", "KrVsKpEW", "Lymphography", "M-of-n", "PenglungEW", "Sonar", "SpectEW", "Tic-tac-toe", "Vote", "WaveformEW", "Wine", "Zoo"] |
| 337 | + |
| 338 | +for dataset in datasetList: |
| 339 | + accuList = [] |
| 340 | + featList = [] |
| 341 | + for count in range(10): |
| 342 | + if (dataset == "WaveformEW" or dataset == "KrVsKpEW") and count>2: |
| 343 | + break |
| 344 | + print(count) |
| 345 | + answer,testAcc = goldenratiomethod("csvUCI/"+dataset+".csv",popSize,maxIter) |
| 346 | + print(testAcc,answer.sum()) |
| 347 | + accuList.append(testAcc) |
| 348 | + featList.append(answer.sum()) |
| 349 | + inx = np.argmax(accuList) |
| 350 | + best_accuracy = accuList[inx] |
| 351 | + best_no_features = featList[inx] |
| 352 | + print(dataset,"best:",accuList[inx],featList[inx]) |
| 353 | + |
| 354 | + with open("result_GRx.csv","a") as f: |
| 355 | + print(dataset,"%.2f" % (100*best_accuracy),best_no_features,file=f) |
0 commit comments