-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotting.py
184 lines (147 loc) · 5.35 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# -*- coding: utf-8 -*-
"""
CCR plotting module
Kiri Choi (c) 2018
"""
import os, sys
import tellurium as te
import roadrunner
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sb
def plotAllProgress(listOfDistances, labels=None, SAVE_PATH=None):
"""
Plots multiple convergence progress
:param listOfDistances: 2D array of distances
:param labels: list of strings to use as labels
:param SAVE: flag for saving the output
"""
for i in range(len(listOfDistances)):
plt.plot(listOfDistances[i])
if labels:
plt.legend(labels)
plt.xlabel("Generations", fontsize=15)
plt.ylabel("Distance", fontsize=15)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
if SAVE_PATH is not None:
if os.path.splitext(SAVE_PATH)[1] == '':
plt.savefig(os.path.join(SAVE_PATH, 'images/convergence.pdf'), bbox_inches='tight')
else:
plt.savefig(SAVE_PATH, bbox_inches='tight')
plt.show()
def plotProgress(distance, SAVE_PATH=None):
"""
Plots convergence progress
:param distance: array of distances
:param model_type: reference model type, e.g. 'FFL', 'Linear', etc.
:param SAVE: flag for saving the output
"""
plt.plot(distance)
plt.xlabel("Generations", fontsize=15)
plt.ylabel("Distance", fontsize=15)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
if SAVE_PATH is not None:
if os.path.splitext(SAVE_PATH)[1] == '':
plt.savefig(os.path.join(SAVE_PATH, 'images/convergence.pdf'), bbox_inches='tight')
else:
plt.savefig(SAVE_PATH, bbox_inches='tight')
plt.show()
def plotResidual(realModel, ens_model, ens_dist, SAVE_PATH=None):
"""
Plots residuals
:param realModel: reference model
:param ens_model: model ensemble
:param ens_dist: model distances
:param model_typ: reference model type
:param SAVE: flag for saving the output
"""
r_real = te.loada(realModel)
result_real = r_real.simulate(0, 100, 100)
top_result = []
top_diff = []
for i in range(len(ens_model)):
r = te.loada(ens_model[np.argsort(ens_dist)[i]])
top_sim = r.simulate(0, 100, 100)
top_result.append(top_sim)
top_diff.append(np.subtract(result_real[:,1:], top_sim[:,1:]))
percentage = 0.1#float(pass_size)/ens_size
ave_diff = np.average(top_diff[:int(len(ens_model)*percentage)], axis=0)
plt.plot(ave_diff)
plt.xlabel("Time (s)", fontsize=15)
plt.ylabel("Residual", fontsize=15)
plt.legend(r.getFloatingSpeciesIds())
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
if SAVE_PATH is not None:
if os.path.splitext(SAVE_PATH)[1] == '':
plt.savefig(os.path.join(SAVE_PATH, 'images/average_residual.pdf'), bbox_inches='tight')
else:
plt.savefig(SAVE_PATH, bbox_inches='tight')
plt.show()
def plotHistogram():
"""
"""
def plotDistanceHistogram(ens_dist, nbin=25, SAVE_PATH=None):
"""
"""
plt.hist(ens_dist, bins=nbin, density=True)
plt.xlabel("Distance", fontsize=15)
plt.ylabel("Normalized Frequency", fontsize=15)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
if SAVE_PATH is not None:
if os.path.splitext(SAVE_PATH)[1] == '':
plt.savefig(os.path.join(SAVE_PATH, 'images/distance_hist.pdf'), bbox_inches='tight')
else:
plt.savefig(SAVE_PATH, bbox_inches='tight')
plt.show()
def plotDistanceHistogramWithKDE(dist_top, log_dens, minInd, nbin=40, SAVE_PATH=None):
"""
"""
hist = plt.hist(dist_top, bins=nbin, density=True)
plt.vlines(dist_top[minInd[0][0]], 0, np.max(hist[0]), linestyles='dashed')
plt.plot(dist_top, np.exp(log_dens), color='tab:red')
plt.xlabel("Distance", fontsize=15)
plt.ylabel("Normalized Frequency", fontsize=15)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
if SAVE_PATH is not None:
if os.path.splitext(SAVE_PATH)[1] == '':
plt.savefig(os.path.join(SAVE_PATH, 'images/distance_hist_w_KDE.pdf'), bbox_inches='tight')
else:
plt.savefig(SAVE_PATH, bbox_inches='tight')
plt.show()
def plotNetwork(path, scale=1.5):
"""
Plot a network diagram
:param path: path to a model
:param scale: diagram scale
"""
import netplotlib as npl
net = npl.Network(path)
net.scale = scale
net.draw()
def plotNetworkEnsemble(path, index=None, threshold=0., scale=1.5):
"""
Plot network ensemble diagram
:param path: path to output folder
:param index: index of models to be included in the diagram
:param threshold: threshold of reactions to be plotted
:param scale: diagram scale
"""
import netplotlib as npl
model_dir = os.path.join(path, 'models')
modelfiles = [f for f in os.listdir(model_dir) if os.path.isfile(os.path.join(model_dir, f))]
modelcontent = []
for i in modelfiles:
sbmlstr = open(os.path.join(model_dir, i), 'r')
modelcontent.append(sbmlstr.read())
sbmlstr.close()
if index >= len(modelcontent):
raise Exception("Specified index value is larger than the size of the list")
net = npl.NetworkEnsemble(modelcontent[:index])
net.plottingThreshold = threshold
net.scale = scale
net.drawWeightedDiagram()