Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

LoweringError: Failed in nopython mode pipeline (step: nopython mode backend) Operands must be the same type, got (i64, i32) #11

Open
taltekte opened this issue Feb 6, 2020 · 2 comments

Comments

@taltekte
Copy link

taltekte commented Feb 6, 2020

I am trying to run this lib on Anaconda on Windows 10.
After I am run code, it stoped on
mssa.fit(wine_tr.to_numpy()[:500])

LoweringError: Failed in nopython mode pipeline (step: nopython mode backend)
Operands must be the same type, got (i64, i32)

File "..........\ProgramData\Anaconda3\lib\site-packages\pymssa-0.1.0-py3.7.egg\pymssa\optimized.py", line 226:
def incremental_component_reconstruction(trajectory_matrix,

components = np.zeros((P, N, rank))
^

[1] During: lowering "$0.7 = call $0.2($0.6, func=$0.2, args=[Var($0.6, C:\ProgramData\Anaconda3\lib\site-packages\pymssa-0.1.0-py3.7.egg\pymssa\optimized.py (226))], kws=(), vararg=None)" at C:\ProgramData\Anaconda3\lib\site-packages\pymssa-0.1.0-py3.7.egg\pymssa\optimized.py (226)

This should not have happened, a problem has occurred in Numba's internals.
You are currently using Numba version 0.45.1.

Please report the error message and traceback, along with a minimal reproducer
at: https://github.com/numba/numba/issues/new

If more help is needed please feel free to speak to the Numba core developers
directly at: https://gitter.im/numba/numba

Thanks in advance for your help in improving Numba!

@taltekte
Copy link
Author

taltekte commented Feb 6, 2020

All messege was

Constructing trajectory matrix
Trajectory matrix shape: (1250, 251)
Decomposing trajectory covariance matrix with SVD
Constructing components
C:\ProgramData\Anaconda3\lib\site-packages\pymssa-0.1.0-py3.7.egg\pymssa\optimized.py:233: NumbaPerformanceWarning: np.dot() is faster on contiguous arrays, called on (array(float64, 2d, A), array(float64, 2d, A))
L

ValueError Traceback (most recent call last)
C:\ProgramData\Anaconda3\lib\site-packages\numba\errors.py in new_error_context(fmt_, *args, **kwargs)
661 try:
--> 662 yield
663 except NumbaError as e:

C:\ProgramData\Anaconda3\lib\site-packages\numba\lowering.py in lower_block(self, block)
257 loc=self.loc, errcls_=defaulterrcls):
--> 258 self.lower_inst(inst)
259

C:\ProgramData\Anaconda3\lib\site-packages\numba\lowering.py in lower_inst(self, inst)
300 ty = self.typeof(inst.target.name)
--> 301 val = self.lower_assign(ty, inst)
302 self.storevar(val, inst.target.name)

C:\ProgramData\Anaconda3\lib\site-packages\numba\lowering.py in lower_assign(self, ty, inst)
458 elif isinstance(value, ir.Expr):
--> 459 return self.lower_expr(ty, value)
460

C:\ProgramData\Anaconda3\lib\site-packages\numba\lowering.py in lower_expr(self, resty, expr)
918 elif expr.op == 'call':
--> 919 res = self.lower_call(resty, expr)
920 return res

C:\ProgramData\Anaconda3\lib\site-packages\numba\lowering.py in lower_call(self, resty, expr)
710 else:
--> 711 res = self._lower_call_normal(fnty, expr, signature)
712

C:\ProgramData\Anaconda3\lib\site-packages\numba\lowering.py in _lower_call_normal(self, fnty, expr, signature)
889
--> 890 res = impl(self.builder, argvals, self.loc)
891 return res

C:\ProgramData\Anaconda3\lib\site-packages\numba\targets\base.py in call(self, builder, args, loc)
1131 def call(self, builder, args, loc=None):
-> 1132 res = self._imp(self._context, builder, self._sig, args, loc=loc)
1133 self._context.add_linking_libs(getattr(self, 'libs', ()))

C:\ProgramData\Anaconda3\lib\site-packages\numba\targets\base.py in wrapper(*args, **kwargs)
1156 kwargs.pop('loc') # drop unused loc
-> 1157 return fn(*args, **kwargs)
1158

C:\ProgramData\Anaconda3\lib\site-packages\numba\targets\arrayobj.py in numpy_zeros_nd(context, builder, sig, args)
3373 arrtype, shapes = _parse_empty_args(context, builder, sig, args)
-> 3374 ary = _empty_nd_impl(context, builder, arrtype, shapes)
3375 _zero_fill_array(context, builder, ary)

C:\ProgramData\Anaconda3\lib\site-packages\numba\targets\arrayobj.py in _empty_nd_impl(context, builder, arrtype, shapes)
3260 for s in shapes:
-> 3261 arrlen = builder.mul(arrlen, s)
3262

C:\ProgramData\Anaconda3\lib\site-packages\llvmlite\ir\builder.py in wrapped(self, lhs, rhs, name, flags)
23 raise ValueError("Operands must be the same type, got (%s, %s)"
---> 24 % (lhs.type, rhs.type))
25 instr = cls(self.block, lhs.type, opname, (lhs, rhs), name, flags)

ValueError: Operands must be the same type, got (i64, i32)

During handling of the above exception, another exception occurred:

LoweringError Traceback (most recent call last)
in
----> 1 mssa.fit(wine_tr.to_numpy()[:500])

C:\ProgramData\Anaconda3\lib\site-packages\pymssa-0.1.0-py3.7.egg\pymssa\mssa.py in fit(self, timeseries)
546 self.P_,
547 self.N_,
--> 548 self.L_
549 )
550

C:\ProgramData\Anaconda3\lib\site-packages\numba\dispatcher.py in _compile_for_args(self, *args, **kws)
393 e.patch_message(''.join(e.args) + help_msg)
394 # ignore the FULL_TRACEBACKS config, this needs reporting!
--> 395 raise e
396
397 def inspect_llvm(self, signature=None):

C:\ProgramData\Anaconda3\lib\site-packages\numba\dispatcher.py in _compile_for_args(self, *args, **kws)
350 argtypes.append(self.typeof_pyval(a))
351 try:
--> 352 return self.compile(tuple(argtypes))
353 except errors.TypingError as e:
354 # Intercept typing error that may be due to an argument

C:\ProgramData\Anaconda3\lib\site-packages\numba\compiler_lock.py in _acquire_compile_lock(*args, **kwargs)
30 def _acquire_compile_lock(*args, **kwargs):
31 with self:
---> 32 return func(*args, **kwargs)
33 return _acquire_compile_lock
34

C:\ProgramData\Anaconda3\lib\site-packages\numba\dispatcher.py in compile(self, sig)
691
692 self._cache_misses[sig] += 1
--> 693 cres = self._compiler.compile(args, return_type)
694 self.add_overload(cres)
695 self._cache.save_overload(sig, cres)

C:\ProgramData\Anaconda3\lib\site-packages\numba\dispatcher.py in compile(self, args, return_type)
74
75 def compile(self, args, return_type):
---> 76 status, retval = self._compile_cached(args, return_type)
77 if status:
78 return retval

C:\ProgramData\Anaconda3\lib\site-packages\numba\dispatcher.py in _compile_cached(self, args, return_type)
88
89 try:
---> 90 retval = self._compile_core(args, return_type)
91 except errors.TypingError as e:
92 self._failed_cache[key] = e

C:\ProgramData\Anaconda3\lib\site-packages\numba\dispatcher.py in _compile_core(self, args, return_type)
106 args=args, return_type=return_type,
107 flags=flags, locals=self.locals,
--> 108 pipeline_class=self.pipeline_class)
109 # Check typing error if object mode is used
110 if cres.typing_error is not None and not flags.enable_pyobject:

C:\ProgramData\Anaconda3\lib\site-packages\numba\compiler.py in compile_extra(typingctx, targetctx, func, args, return_type, flags, locals, library, pipeline_class)
970 pipeline = pipeline_class(typingctx, targetctx, library,
971 args, return_type, flags, locals)
--> 972 return pipeline.compile_extra(func)
973
974

C:\ProgramData\Anaconda3\lib\site-packages\numba\compiler.py in compile_extra(self, func)
388 self.lifted = ()
389 self.lifted_from = None
--> 390 return self._compile_bytecode()
391
392 def compile_ir(self, func_ir, lifted=(), lifted_from=None):

C:\ProgramData\Anaconda3\lib\site-packages\numba\compiler.py in _compile_bytecode(self)
901 """
902 assert self.func_ir is None
--> 903 return self._compile_core()
904
905 def _compile_ir(self):

C:\ProgramData\Anaconda3\lib\site-packages\numba\compiler.py in _compile_core(self)
888 self.define_pipelines(pm)
889 pm.finalize()
--> 890 res = pm.run(self.status)
891 if res is not None:
892 # Early pipeline completion

C:\ProgramData\Anaconda3\lib\site-packages\numba\compiler_lock.py in _acquire_compile_lock(*args, **kwargs)
30 def _acquire_compile_lock(*args, **kwargs):
31 with self:
---> 32 return func(*args, **kwargs)
33 return _acquire_compile_lock
34

C:\ProgramData\Anaconda3\lib\site-packages\numba\compiler.py in run(self, status)
264 # No more fallback pipelines?
265 if is_final_pipeline:
--> 266 raise patched_exception
267 # Go to next fallback pipeline
268 else:

C:\ProgramData\Anaconda3\lib\site-packages\numba\compiler.py in run(self, status)
255 try:
256 event("-- %s" % stage_name)
--> 257 stage()
258 except _EarlyPipelineCompletion as e:
259 return e.result

C:\ProgramData\Anaconda3\lib\site-packages\numba\compiler.py in stage_nopython_backend(self)
762 """
763 lowerfn = self.backend_nopython_mode
--> 764 self._backend(lowerfn, objectmode=False)
765
766 def stage_compile_interp_mode(self):

C:\ProgramData\Anaconda3\lib\site-packages\numba\compiler.py in _backend(self, lowerfn, objectmode)
701 self.library.enable_object_caching()
702
--> 703 lowered = lowerfn()
704 signature = typing.signature(self.return_type, *self.args)
705 self.cr = compile_result(

C:\ProgramData\Anaconda3\lib\site-packages\numba\compiler.py in backend_nopython_mode(self)
688 self.calltypes,
689 self.flags,
--> 690 self.metadata)
691
692 def _backend(self, lowerfn, objectmode):

C:\ProgramData\Anaconda3\lib\site-packages\numba\compiler.py in native_lowering_stage(targetctx, library, interp, typemap, restype, calltypes, flags, metadata)
1141 lower = lowering.Lower(targetctx, library, fndesc, interp,
1142 metadata=metadata)
-> 1143 lower.lower()
1144 if not flags.no_cpython_wrapper:
1145 lower.create_cpython_wrapper(flags.release_gil)

C:\ProgramData\Anaconda3\lib\site-packages\numba\lowering.py in lower(self)
175 if self.generator_info is None:
176 self.genlower = None
--> 177 self.lower_normal_function(self.fndesc)
178 else:
179 self.genlower = self.GeneratorLower(self)

C:\ProgramData\Anaconda3\lib\site-packages\numba\lowering.py in lower_normal_function(self, fndesc)
216 # Init argument values
217 self.extract_function_arguments()
--> 218 entry_block_tail = self.lower_function_body()
219
220 # Close tail of entry block

C:\ProgramData\Anaconda3\lib\site-packages\numba\lowering.py in lower_function_body(self)
241 bb = self.blkmap[offset]
242 self.builder.position_at_end(bb)
--> 243 self.lower_block(block)
244
245 self.post_lower()

C:\ProgramData\Anaconda3\lib\site-packages\numba\lowering.py in lower_block(self, block)
256 with new_error_context('lowering "{inst}" at {loc}', inst=inst,
257 loc=self.loc, errcls_=defaulterrcls):
--> 258 self.lower_inst(inst)
259
260 def create_cpython_wrapper(self, release_gil=False):

C:\ProgramData\Anaconda3\lib\contextlib.py in exit(self, type, value, traceback)
128 value = type()
129 try:
--> 130 self.gen.throw(type, value, traceback)
131 except StopIteration as exc:
132 # Suppress StopIteration unless it's the same exception that

C:\ProgramData\Anaconda3\lib\site-packages\numba\errors.py in new_error_context(fmt_, *args, **kwargs)
668 from numba import config
669 tb = sys.exc_info()[2] if config.FULL_TRACEBACKS else None
--> 670 six.reraise(type(newerr), newerr, tb)
671
672

C:\ProgramData\Anaconda3\lib\site-packages\numba\six.py in reraise(tp, value, tb)
657 if value.traceback is not tb:
658 raise value.with_traceback(tb)
--> 659 raise value
660
661 else:

LoweringError: Failed in nopython mode pipeline (step: nopython mode backend)
Operands must be the same type, got (i64, i32)

File "..........\ProgramData\Anaconda3\lib\site-packages\pymssa-0.1.0-py3.7.egg\pymssa\optimized.py", line 226:
def incremental_component_reconstruction(trajectory_matrix,

components = np.zeros((P, N, rank))
^

[1] During: lowering "$0.7 = call $0.2($0.6, func=$0.2, args=[Var($0.6, C:\ProgramData\Anaconda3\lib\site-packages\pymssa-0.1.0-py3.7.egg\pymssa\optimized.py (226))], kws=(), vararg=None)" at C:\ProgramData\Anaconda3\lib\site-packages\pymssa-0.1.0-py3.7.egg\pymssa\optimized.py (226)

This should not have happened, a problem has occurred in Numba's internals.
You are currently using Numba version 0.45.1.

Please report the error message and traceback, along with a minimal reproducer
at: https://github.com/numba/numba/issues/new

If more help is needed please feel free to speak to the Numba core developers
directly at: https://gitter.im/numba/numba

Thanks in advance for your help in improving Numba!

@zhangcy0169
Copy link

I have the same problem

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants