Skip to content

khalidelboray/cv-aid

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

cv-aid

CV Aid is a set of helpers of computer vision tasks.

Installation

pip install cv-aid

From source

git clone https://github.com/khalidelboray/cv-aid
cd cv-aid
poetry install
poetry run python setup.py install

Tests

poetry run test

all tests are in tests/ directory.

Examples

  • Basic Frame Functions

    from cv_aid import Frame
    
    frame = Frame.load('/path/to/image.jpg')
    # or
    import cv2
    frame = Frame(cv2.imread('/path/to/image.jpg'))
    
    # Grayscale image
    gray = frame.gray()
    
    # Resize image
    small = frame.resize(width=100, height=100)
    
    # Crop image
    cropped = frame.crop(x=100, y=100, width=100, height=100)
    
    # All methods return a new Frame object, so you can chain them
    new_frame = frame.resize(width=100, height=100).crop(x=100, y=100, width=100, height=100)
    
    # Save image
    frame.save('/path/to/image.jpg')
  • Basic Video Functions

    from cv_aid import VideoStream, Frame
    import cv2
    import numpy as np
    
    
    def on_frame(frame: Frame) -> Frame:
        """
        A function that is called when a frame is read from the video stream.
    
        :param frame: The frame that was read.
        :return: The frame that was read.
        """
        orig = frame
        canny = frame.gray().canny(50, 100)
        line_image = Frame(np.copy(orig.frame) * 0)
        lines = cv2.HoughLinesP(
            canny.frame, 1, np.pi / 180, 50, np.array([]), minLineLength=10, maxLineGap=5
        )
        if lines is not None:
            for line in lines:
                line = line[0]
                line_image = line_image.line(
                    (line[0], line[1]), (line[2], line[3]), (0, 255, 0), 3
                )
        lines_edges = cv2.addWeighted(orig.frame, 0.8, line_image.frame, 1, 1)
        return Frame(lines_edges)
    
    
    stream = VideoStream(src=0, on_frame=on_frame).start()
    stream.start_window()

    Output Demo:

    Code Window

  • Haar Cascade Functions

    from cv_aid import VideoStream, Frame
    
    def on_frame(frame: Frame) -> Frame:
        """
        A function that is called when a frame is read from the video stream.
    
        :param frame: The frame that was read.
        :return: The frame that was read.
        """
        boxes = frame.haarcascades.detect_faces(frame.frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
        frame = frame.boxes(boxes, color=(0, 255, 0))
        return frame
    
    
    if __name__ == "__main__":
    
        stream = VideoStream(src=0, on_frame=on_frame).start()
        stream.start_window()

    Output Demo:

    haarcascade Window

  • Tourch Hub (Yolov5)

    from cv_aid import VideoStream, Frame
    import torch
    
    model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
    
    def on_frame(frame: Frame) -> Frame:
        """
        A function that is called when a frame is read from the video stream.
    
        :param frame: The frame that was read.
        :return: The frame that was read.
        """
        results = model(frame.frame)
        results.display(render=True)
        frame = Frame(results.imgs[0])    
        return frame
    
    
    if __name__ == "__main__":
        
        stream = VideoStream(src=0, on_frame=on_frame).start()
        stream.start_window()

    torch yolov5

  • Dlib (Download model)

    from cv_aid._dlib import Dlib
    saved_model = Dlib.download_landmark_detector(path='/dir/to/download/model/at/')
    dlib = Dlib(landmark_predictor_path=saved_model)
    
    face_recognetion_model = Dlib.download_face_recognition_model_v1(path='/dir/to/download/model/at/')
  • Dlib (Face landmark)

    Give it a try!

    # pylint: disable=C0103
    
    import math
    
    import cv2
    import numpy as np
    from skimage.draw import disk, polygon, set_color
    
    from cv_aid import Frame, VideoStream
    
    RIGHT_EYE_POINTS = list(range(36, 42))
    LEFT_EYE_POINTS = list(range(42, 48))
    
    
    def get_poly_data(desired, landmarks, shape):
        points = []
        for i in desired:
            points.append((landmarks.part(i).x, landmarks.part(i).y))
        points = np.array(points, dtype=np.int32)
        rr, cc = polygon(points[:, 1], points[:, 0], shape)
        return points, rr, cc
    
    
    def on_frame(frame: Frame) -> Frame:
        """
        A function that is called when a frame is read from the video stream.
    
        :param frame: The frame that was read.
        :return: The frame that was read.
        """
    
        faces = frame.dlib.detect_faces(frame.frame)
        for face in faces:
            face_landmarks = frame.dlib.detect_landmarks(frame.frame, face)
            left_eye, *_ = get_poly_data(LEFT_EYE_POINTS, face_landmarks, frame.shape)
            right_eye, *_ = get_poly_data(RIGHT_EYE_POINTS, face_landmarks, frame.shape)
    
            left_eye_center = left_eye.mean(axis=0).astype("int")
            right_eye_center = right_eye.mean(axis=0).astype("int")
            left_eye_radius = (
                int(
                    math.sqrt(
                        (left_eye[3][0] - left_eye[0][0]) ** 2
                        + (left_eye[3][1] - left_eye[0][1]) ** 2
                    )
                )
                - 10
            )
            right_eye_radius = (
                int(
                    math.sqrt(
                        (right_eye[3][0] - right_eye[0][0]) ** 2
                        + (right_eye[3][1] - right_eye[0][1]) ** 2
                    )
                )
                - 10
            )
            frame = (
                # Glasses connection line
                frame.line(
                    (left_eye_center[0] - left_eye_radius, left_eye_center[1]),
                    (right_eye_center[0] + right_eye_radius, right_eye_center[1]),
                    (0, 0, 0),
                    4,
                )
                # Glasses circle 1 *Border*
                .circle(
                    left_eye_center,
                    left_eye_radius,
                    (0, 0, 0),
                    4,
                )
                # Glasses circle 1
                .circle(
                    left_eye_center,
                    left_eye_radius,
                    (0, 0, 255),
                    2,
                )
                # Glasses circle 2 *Border*
                .circle(
                    right_eye_center,
                    right_eye_radius,
                    (0, 0, 0),
                    4,
                )
                # Glasses circle 2
                .circle(
                    right_eye_center,
                    right_eye_radius,
                    (0, 0, 255),
                    2,
                )
                # Ears connection line 1
                .line(
                    (face_landmarks.part(0).x, face_landmarks.part(0).y),
                    (right_eye_center[0] - right_eye_radius, right_eye_center[1]),
                    (0, 0, 255),
                    2,
                )
                # Ears connection line 1
                .line(
                    (face_landmarks.part(16).x, face_landmarks.part(16).y),
                    (left_eye_center[0] + left_eye_radius, left_eye_center[1]),
                    (0, 0, 255),
                    2,
                )
            )
            # Overlay the frame with the image of the glasses colored in transparent black
            overlay = frame.frame.copy()
            alpha = 0.5
            # Get first circle rows and columns (pixel coordinates)
            rr, cc = disk(right_eye_center[::-1], right_eye_radius)
            # Set the color of the circle
            set_color(overlay, (rr, cc), (0, 0, 0))
    
            # Get second circle rows and columns (pixel coordinates)
            rr, cc = disk(left_eye_center[::-1], left_eye_radius)
            # Set the color of the circle
            set_color(overlay, (rr, cc), (0, 0, 0))
    
            # Overlay the image with the overlay image
            frame.frame = cv2.addWeighted(overlay, alpha, frame.frame, 1 - alpha, 0)
    
        return frame
    
    
    if __name__ == "__main__":
    
        stream = VideoStream(src=0, on_frame=on_frame).start()
        stream.start_window()

About

CV Aid is a set of helpers for computer vision tasks.

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages