-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfun.lhs
202 lines (149 loc) · 5.56 KB
/
fun.lhs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
> module Functions where
> import Prelude hiding (take)
Examples, based on the talk by Rhys Price Jones and Jacob Rigby.
ats 12/2006
Some of the useful functions already exist in the Prelude.
To avoid a name clash some names in here have a trailing quote.
repeat' digit
returns an infinite list of the same digit
-- list construction (element : tail-list)
-- recursive function application (left-associative, high precedence)
> repeat' n = n : repeat' n
add as bs
returns a list of the element-wise sum of two infinite lists
-- list patterns as parameters (car:cdr)
-- car/cdr pattern: act on first element, recurse on rest
> add (a:as) (b:bs) = (a+b) : add as bs
ints
returns a list of all integers
-- function application, needs parentheses here
> ints = 1 : add ints (repeat' 1)
take number-of-elements list
returns the first number-of-elements (or fewer) elements from the list
-- guards (header | condition = expression | ...)
-- empty list []
-- based off the Prelude take function
> take n _
> | n <= 0 = [] -- Checks if the n is less than or equal to zero BEFORE evaluating the (x:xs) parameter
> take _ [] = [] -- THEN Checks if the list parameter is empty
> take n (x:xs) = x : take (n-1) xs --FINALLY performs the "normal" functionality
odds
returns a list of all odd numbers
-- local definitions (definition where definition ...)
> odds = sub evens (repeat' 1)
> where
> evens = add ints ints
> sub (a:as) (b:bs) = (a-b) : sub as bs
evens
returns a list of all even numbers
> evens = add odds (repeat' 1)
fibs
returns a list of all Fibonacci numbers
-- local definitions (let definition ... in expression)
-- efficient solution
> fibs =
> let
> f a b = a : f b (a+b)
> in
> f 0 1
fac number
returns the factorial of a number
-- tail-recursive helper function
-- fac 30000 draws illegal instruction on hugs/G5, works in ghci/G5
> fac n = f n 1
> where
> f 0 result = result
> f n result = f (n-1) (n*result)
ack x y
returns the value of Ackermann's function
-- ack 0 0 through ack 3 4 is reasonable, others are not
> ack 0 y = y + 1
> ack x 0 = ack (x-1) 1
> ack x y = ack (x-1) (ack x (y-1))
rats
returns a list of all rational numbers
-- enumerates diagonals of lattice: row/numerator, column/denominator
-- duplicates some
-- tuple (x, ...), heterogeneous, fixed length
> rats = (1,1) : map next rats
> where
> next (n,1) = (1, (n+1))
> next (n,m) = ((n+1), (m-1))
sieve list
returns the result of the Sieve of Erathostenes applied to a list
-- list comprehension: [expression | variable <- set, condition]
-- infix use of a function: `name`
> sieve (p:x) = p : sieve [n | n <- x, n `mod` p > 0]
primes
returns the list of all primes
-- list pattern: [value, value ..]
> primes = sieve [2..]
qsort list
returns sorted list
-- list concatenation (list ++ list)
> qsort list =
> case list of
> [] -> []
> (pivot:xs) -> qsort [x | x <- xs, x <= pivot]
> ++ [pivot]
> ++ qsort [x | x <- xs, x > pivot]
perms list
returns all permutations of a list
-- don't care parameter: _
> perms [] = [[]]
> perms s =
> [x:y | x <- s, y <- perms (s `without` x)]
> where
> without [] _ = []
> without (x:xs) y =
> if x == y then xs
> else x : (xs `without` y)
this version does not allow for repeated values
- if x == y then (xs `without` y)
queens n
returns a list of all lists placing n queens on a n by n board,
each list contains for each column the row where to place the queen
-- corrected from <http://cs.wwc.edu/KU/PR/Haskell.html>
> queens n = place n
> where
place m
returns all ways to place m of n queens on a m by n board
-- performance is poor if generators are interchanged
> place 0 = [[]]
> place m = [ row:previous | previous <- place (m-1), row <- [1..n],
> safe row previous 1 ]
safe row (r:rs) i
returns True if queen in row,1 does not collide with queens in r,i+1 ..
> safe row [] _ = True -- no other queens
> safe row (r:rs) i
> | row == r = False -- same row
> | abs(row-r) == i = False -- on same diagonal
> | True = safe row rs (i+1) -- depends on other columns
hanoi n
solves the Tower of Hanoi problem,
returns a list of pairs indicating the piles to move from and to
> hanoi n = f n 1 2 3
> where
> f 0 _ _ _ = []
> f (n+1) from help to = f n from to help ++ [(from,to)] ++ f n help from to
factors n
returns the list of factors of a number, including 1
-- div does integer division
> factors n = [i | i <- [1..n `div` 2], n `mod` i == 0]
perfects
returns the list of perfect numbers, i.e., n == sum of factors of n
-- anonymous function: \ pattern ... -> expression
-- from list where predicate: filter predicate list
> perfects = filter (is_perfect) ints
perms' list
returns all permutations of a list
-- currying: function call with a missing parameter is a function
> perms' [] = [[]]
> perms' s = [ x:y | x <- s, y <- perms' (filter (x /=) s)]
pascal
returns a list of all rows of Pascal's triangle
> pascal = f [1]
> where
> f row = row : (f.next) (0:row) -- collect rows
> next (x:y:tail) = (x+y) : next (y:tail)
> next [x] = [x]