-
Notifications
You must be signed in to change notification settings - Fork 23
/
synthesize.py
268 lines (229 loc) · 8.63 KB
/
synthesize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import re
import argparse
from string import punctuation
import torch
import yaml
import numpy as np
import os
import json
import librosa
import pyworld as pw
import audio as Audio
from torch.utils.data import DataLoader
from g2p_en import G2p
from pypinyin import pinyin, Style
from utils.model import get_model, get_vocoder
from utils.tools import to_device, synth_samples
from dataset import BatchInferenceDataset
from text import text_to_sequence
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def read_lexicon(lex_path):
lexicon = {}
with open(lex_path) as f:
for line in f:
temp = re.split(r"\s+", line.strip("\n"))
word = temp[0]
phones = temp[1:]
if word.lower() not in lexicon:
lexicon[word.lower()] = phones
return lexicon
def get_audio(preprocess_config, wav_path):
hop_length = preprocess_config["preprocessing"]["stft"]["hop_length"]
sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
STFT = Audio.stft.TacotronSTFT(
preprocess_config["preprocessing"]["stft"]["filter_length"],
hop_length,
preprocess_config["preprocessing"]["stft"]["win_length"],
preprocess_config["preprocessing"]["mel"]["n_mel_channels"],
sampling_rate,
preprocess_config["preprocessing"]["mel"]["mel_fmin"],
preprocess_config["preprocessing"]["mel"]["mel_fmax"],
)
with open(
os.path.join(preprocess_config["path"]["preprocessed_path"], "stats.json")
) as f:
stats = json.load(f)
stats = stats["pitch"][2:] + stats["energy"][2:]
pitch_mean, pitch_std, energy_mean, energy_std = stats
# Read and trim wav files
wav, _ = librosa.load(wav_path)
# Compute fundamental frequency
pitch, t = pw.dio(
wav.astype(np.float64),
sampling_rate,
frame_period=hop_length / sampling_rate * 1000,
)
pitch = pw.stonemask(wav.astype(np.float64), pitch, t, sampling_rate)
# Compute mel-scale spectrogram and energy
mel_spectrogram, energy = Audio.tools.get_mel_from_wav(wav.astype(np.float32), STFT)
# Normalize Variance
pitch = (pitch - pitch_mean) / pitch_std
energy = (energy - energy_mean) / energy_std
mels = mel_spectrogram.T[None]
mel_lens = np.array([len(mels[0])])
mel_spectrogram = mel_spectrogram.astype(np.float32)
energy = energy.astype(np.float32)
return mels, mel_lens, (mel_spectrogram, pitch, energy)
def preprocess_english(text, preprocess_config):
text = text.rstrip(punctuation)
lexicon = read_lexicon(preprocess_config["path"]["lexicon_path"])
g2p = G2p()
phones = []
words = re.split(r"([,;.\-\?\!\s+])", text)
for w in words:
if w.lower() in lexicon:
phones += lexicon[w.lower()]
else:
phones += list(filter(lambda p: p != " ", g2p(w)))
phones = "{" + "}{".join(phones) + "}"
phones = re.sub(r"\{[^\w\s]?\}", "{sp}", phones)
phones = phones.replace("}{", " ")
print("Raw Text Sequence: {}".format(text))
print("Phoneme Sequence: {}".format(phones))
sequence = np.array(
text_to_sequence(
phones, preprocess_config["preprocessing"]["text"]["text_cleaners"]
)
)
return np.array(sequence)
def preprocess_mandarin(text, preprocess_config):
lexicon = read_lexicon(preprocess_config["path"]["lexicon_path"])
phones = []
pinyins = [
p[0]
for p in pinyin(
text, style=Style.TONE3, strict=False, neutral_tone_with_five=True
)
]
for p in pinyins:
if p in lexicon:
phones += lexicon[p]
else:
phones.append("sp")
phones = "{" + " ".join(phones) + "}"
print("Raw Text Sequence: {}".format(text))
print("Phoneme Sequence: {}".format(phones))
sequence = np.array(
text_to_sequence(
phones, preprocess_config["preprocessing"]["text"]["text_cleaners"]
)
)
return np.array(sequence)
def synthesize(model, step, configs, vocoder, batchs, control_values):
preprocess_config, model_config, train_config = configs
pitch_control, energy_control, duration_control = control_values
for batch in batchs:
batch = to_device(batch, device)
with torch.no_grad():
# Forward
output = model(
*(batch[2:-1]),
p_control=pitch_control,
e_control=energy_control,
d_control=duration_control
)
synth_samples(
batch,
output,
vocoder,
model_config,
preprocess_config,
train_config["path"]["result_path"],
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--restore_step", type=int, required=True)
parser.add_argument(
"--mode",
type=str,
choices=["batch", "single"],
required=True,
help="Synthesize a whole dataset or a single sentence",
)
parser.add_argument(
"--source",
type=str,
default=None,
help="path to a source file with format like train.txt and val.txt, for batch mode only",
)
parser.add_argument(
"--text",
type=str,
default=None,
help="raw text to synthesize, for single-sentence mode only",
)
parser.add_argument(
"--ref_audio",
type=str,
default=None,
help="reference audio path to extract the speech style, for single-sentence mode only",
)
parser.add_argument(
"-p",
"--preprocess_config",
type=str,
required=True,
help="path to preprocess.yaml",
)
parser.add_argument(
"-m", "--model_config", type=str, required=True, help="path to model.yaml"
)
parser.add_argument(
"-t", "--train_config", type=str, required=True, help="path to train.yaml"
)
parser.add_argument(
"--pitch_control",
type=float,
default=1.0,
help="control the pitch of the whole utterance, larger value for higher pitch",
)
parser.add_argument(
"--energy_control",
type=float,
default=1.0,
help="control the energy of the whole utterance, larger value for larger volume",
)
parser.add_argument(
"--duration_control",
type=float,
default=1.0,
help="control the speed of the whole utterance, larger value for slower speaking rate",
)
args = parser.parse_args()
# Check source texts
if args.mode == "batch":
assert args.source is not None and args.text is None
if args.mode == "single":
assert args.source is None and args.text is not None
# Read Config
preprocess_config = yaml.load(
open(args.preprocess_config, "r"), Loader=yaml.FullLoader
)
model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader)
configs = (preprocess_config, model_config, train_config)
# Get model
model = get_model(args, configs, device, train=False)
# Load vocoder
vocoder = get_vocoder(model_config, device)
# Preprocess texts
if args.mode == "batch":
# Get dataset
dataset = BatchInferenceDataset(args.source, preprocess_config)
batchs = DataLoader(
dataset,
batch_size=8,
collate_fn=dataset.collate_fn,
)
if args.mode == "single":
ids = raw_texts = [args.text[:100]]
if preprocess_config["preprocessing"]["text"]["language"] == "en":
texts = np.array([preprocess_english(args.text, preprocess_config)])
elif preprocess_config["preprocessing"]["text"]["language"] == "zh":
texts = np.array([preprocess_mandarin(args.text, preprocess_config)])
text_lens = np.array([len(texts[0])])
mels, mel_lens, ref_info = get_audio(preprocess_config, args.ref_audio)
batchs = [(["_".join([os.path.basename(args.ref_audio).strip(".wav"), id]) for id in ids], \
raw_texts, None, texts, text_lens, max(text_lens), mels, mel_lens, max(mel_lens), [ref_info])]
control_values = args.pitch_control, args.energy_control, args.duration_control
synthesize(model, args.restore_step, configs, vocoder, batchs, control_values)