-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_ptb_nstep.py
executable file
·306 lines (250 loc) · 11.7 KB
/
train_ptb_nstep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#!/usr/bin/env python
"""Sample script of recurrent neural network language model.
This code is ported from the following implementation written in Torch.
https://github.com/tomsercu/lstm
"""
from __future__ import division
from __future__ import print_function
import argparse
import copy
import numpy as np
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import training
from chainer.training import extensions
from chainer import reporter as reporter_module
# Definition of a recurrent net for language modeling
class RNNForLM(chainer.Chain):
def __init__(self, n_vocab, n_units, train=True):
n_layer = 2
super(RNNForLM, self).__init__(
embed=L.EmbedID(n_vocab, n_units),
l1=L.NStepLSTM(n_layer, n_units, n_units, 0.5, True),
l2=L.Linear(n_units, n_vocab),
)
self.train = train
self.n_layer = n_layer
self.n_units = n_units
def __call__(self, xs):
x_len = [len(x) for x in xs]
x_section = np.cumsum(x_len[:-1])
ex = self.embed(F.concat(xs, axis=0))
exs = F.split_axis(ex, x_section, 0, force_tuple=True)
xp = self.xp
volatile = xs[0].volatile
hx = chainer.Variable(xp.zeros((self.n_layer, len(xs), self.n_units), dtype=xp.float32), volatile=volatile)
cx = chainer.Variable(xp.zeros((self.n_layer, len(xs), self.n_units), dtype=xp.float32), volatile=volatile)
_, _, ys = self.l1(hx, cx, exs, train=self.train)
y = [self.l2(F.dropout(i, train=self.train)) for i in ys]
return y
# Dataset iterator to create a batch of sequences at different positions.
# This iterator returns a pair of current words and the next words. Each
# example is a part of sequences starting from the different offsets
# equally spaced within the whole sequence.
class ParallelSequentialIterator(chainer.dataset.Iterator):
def __init__(self, dataset, batch_size, bprop_len, repeat=True):
self.dataset = dataset
self.batch_size = batch_size # batch size
self.bprop_len = bprop_len
# Number of completed sweeps over the dataset. In this case, it is
# incremented if every word is visited at least once after the last
# increment.
self.epoch = 0
# True if the epoch is incremented at the last iteration.
self.is_new_epoch = False
self.repeat = repeat
length = len(dataset)
# Offsets maintain the position of each sequence in the mini-batch.
self.offsets = [i * length // batch_size for i in range(batch_size)]
# NOTE: this is not a count of parameter updates. It is just a count of
# calls of ``__next__``.
self.iteration = 0
def __next__(self):
# This iterator returns a list representing a mini-batch. Each item
# indicates a different position in the original sequence. Each item is
# represented by a pair of two word IDs. The first word is at the
# "current" position, while the second word at the next position.
# At each iteration, the iteration count is incremented, which pushes
# forward the "current" position.
length = len(self.dataset)
if not self.repeat and self.iteration * self.batch_size >= length:
# If not self.repeat, this iterator stops at the end of the first
# epoch (i.e., when all words are visited once).
raise StopIteration
cur_words = self.get_words()
self.iteration += 1
next_words = self.get_words()
epoch = self.iteration * self.batch_size * self.bprop_len // length
self.is_new_epoch = self.epoch < epoch
if self.is_new_epoch:
self.epoch = epoch
return list(zip(cur_words, next_words))
@property
def epoch_detail(self):
# Floating point version of epoch.
return self.iteration * self.batch_size * self.bprop_len / len(self.dataset)
def get_words(self):
items = []
for offset in self.offsets:
start = (offset + self.iteration) % len(self.dataset)
item = self.dataset[start : start+self.bprop_len]
if start+self.bprop_len > len(self.dataset):
items.append(np.concatenate((item, self.dataset[:start + self.bprop_len - len(self.dataset)])))
else:
items.append(item)
return items
def serialize(self, serializer):
# It is important to serialize the state to be recovered on resume.
self.iteration = serializer('iteration', self.iteration)
self.epoch = serializer('epoch', self.epoch)
def convert(batch, device):
if device is None:
def to_device(x):
return x
elif device < 0:
to_device = chainer.cuda.to_cpu
else:
def to_device(x):
return chainer.cuda.to_gpu(x, device, chainer.cuda.Stream.null)
def to_device_batch(batch):
if device is None:
return batch
elif device < 0:
return [to_device(x) for x in batch]
else:
xp = chainer.cuda.cupy.get_array_module(*batch)
concat = xp.concatenate(batch, axis=0)
sections = np.cumsum([len(x) for x in batch[:-1]], dtype='i')
concat_dev = to_device(concat)
batch_dev = chainer.cuda.cupy.split(concat_dev, sections)
return batch_dev
return tuple([to_device_batch([x for x, _ in batch]), to_device_batch([y for _, y in batch])])
# Custom updater for truncated BackProp Through Time (BPTT)
class BPTTUpdater(training.StandardUpdater):
def __init__(self, train_iter, optimizer, device):
super(BPTTUpdater, self).__init__(
train_iter, optimizer, converter=convert, device=device)
# The core part of the update routine can be customized by overriding.
def update_core(self):
# When we pass one iterator and optimizer to StandardUpdater.__init__,
# they are automatically named 'main'.
train_iter = self.get_iterator('main')
optimizer = self.get_optimizer('main')
# Progress the dataset iterator for bprop_len words at each iteration.
# Get the next batch (a list of tuples of two word IDs)
batch = train_iter.__next__()
# Concatenate the word IDs to matrices and send them to the device
# self.converter does this job
# (it is chainer.dataset.concat_examples by default)
xs, ts = self.converter(batch, self.device)
# Compute the loss at this time step and accumulate it
loss = optimizer.target([chainer.Variable(x) for x in xs], [chainer.Variable(t) for t in ts])
optimizer.target.cleargrads() # Clear the parameter gradients
loss.backward() # Backprop
loss.unchain_backward() # Truncate the graph
optimizer.update() # Update the parameters
class BPTTEvaluator(training.extensions.Evaluator):
def __init__(self, iterator, target, device):
super(BPTTEvaluator, self).__init__(
iterator, target, converter=convert, device=device)
def evaluate(self):
iterator = self._iterators['main']
target = self._targets['main']
eval_func = self.eval_func or target
if self.eval_hook:
self.eval_hook(self)
it = copy.copy(iterator)
summary = reporter_module.DictSummary()
for batch in it:
observation = {}
with reporter_module.report_scope(observation):
xs, ts = self.converter(batch, self.device)
eval_func([chainer.Variable(x, volatile='on') for x in xs], [chainer.Variable(t, volatile='on') for t in ts])
summary.add(observation)
return summary.compute_mean()
def sum_softmax_cross_entropy(ys, ts):
loss = 0
for y, t in zip(ys, ts):
loss += chainer.functions.softmax_cross_entropy(y, t)
return loss
# Routine to rewrite the result dictionary of LogReport to add perplexity
# values
def compute_perplexity(result):
result['perplexity'] = np.exp(result['main/loss'])
if 'validation/main/loss' in result:
result['val_perplexity'] = np.exp(result['validation/main/loss'])
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--batchsize', '-b', type=int, default=20,
help='Number of examples in each mini-batch')
parser.add_argument('--bproplen', '-l', type=int, default=35,
help='Number of words in each mini-batch '
'(= length of truncated BPTT)')
parser.add_argument('--epoch', '-e', type=int, default=39,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--gradclip', '-c', type=float, default=5,
help='Gradient norm threshold to clip')
parser.add_argument('--out', '-o', default='result',
help='Directory to output the result')
parser.add_argument('--resume', '-r', default='',
help='Resume the training from snapshot')
parser.add_argument('--test', action='store_true',
help='Use tiny datasets for quick tests')
parser.set_defaults(test=False)
parser.add_argument('--unit', '-u', type=int, default=650,
help='Number of LSTM units in each layer')
args = parser.parse_args()
# Load the Penn Tree Bank long word sequence dataset
train, val, test = chainer.datasets.get_ptb_words()
n_vocab = max(train) + 1 # train is just an array of integers
print('#vocab =', n_vocab)
if args.test:
train = train[:100]
val = val[:100]
test = test[:100]
train_iter = ParallelSequentialIterator(train, args.batchsize, args.bproplen)
val_iter = ParallelSequentialIterator(val, 1, args.bproplen, repeat=False)
test_iter = ParallelSequentialIterator(test, 1, args.bproplen, repeat=False)
# Prepare an RNNLM model
rnn = RNNForLM(n_vocab, args.unit)
model = L.Classifier(rnn, lossfun=sum_softmax_cross_entropy)
model.compute_accuracy = False # we only want the perplexity
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use() # make the GPU current
model.to_gpu()
# Set up an optimizer
optimizer = chainer.optimizers.SGD(lr=1.0)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.GradientClipping(args.gradclip))
# Set up a trainer
updater = BPTTUpdater(train_iter, optimizer, args.gpu)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
eval_model = model.copy() # Model with shared params and distinct states
eval_rnn = eval_model.predictor
eval_rnn.train = False
trainer.extend(BPTTEvaluator(
val_iter, eval_model, device=args.gpu))
interval = 10 if args.test else 500
trainer.extend(extensions.LogReport(postprocess=compute_perplexity,
trigger=(interval, 'iteration')))
trainer.extend(extensions.PrintReport(
['epoch', 'iteration', 'perplexity', 'val_perplexity']
), trigger=(interval, 'iteration'))
trainer.extend(extensions.ProgressBar(
update_interval=1 if args.test else 10))
trainer.extend(extensions.snapshot())
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'))
if args.resume:
chainer.serializers.load_npz(args.resume, trainer)
trainer.run()
# Evaluate the final model
print('test')
evaluator = BPTTEvaluator(test_iter, eval_model, device=args.gpu)
result = evaluator()
print('test perplexity:', np.exp(float(result['main/loss'])))
if __name__ == '__main__':
main()