-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenetic_algorithm.py
385 lines (359 loc) · 12.5 KB
/
genetic_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
"""
This file contains the class that provides the genetic algorithm search.
"""
import neural_network
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
W1_INDEX = 0
W2_INDEX = 2
ALPHABET = [
"a",
"b",
"c",
"d",
"e",
"f",
"g",
"h",
"i",
"j",
"k",
"l",
"m",
"n",
"o",
"p",
"q",
"r",
"s",
"t",
"u",
"v",
"w",
"x",
"y",
"z",
]
ALPHABET += [a.upper() for a in ALPHABET]
class GeneticAlgorithm:
def __init__(
self,
hybrid=True,
input_size=2,
hidden_layer_size=5,
output_size=1,
population_size=6,
selection_size=2,
learning_rate=1e-3,
epochs=10,
generations=10,
cases=["mse", "l2", "l1", "time"],
# ****** make sure to toggle verbosity during training!! *****
verbose=0,
):
"""
If learning rate is 0, the algorithm is just regular mutation.
Cases can include:
* mse
* run time
* l2 norm of weights
* l1 norm of weights
"""
self.hybrid = hybrid
self.input_size = input_size
self.hidden_layer_size = hidden_layer_size
self.output_size = output_size
self.population_size = population_size
self.selection_size = selection_size
self.learning_rate = learning_rate
self.cases = cases
self.epochs = epochs
self.generations = generations
self.scale_of_mutation = 1.0 # future work
self.verbose = verbose
self.best_model = None
self.best_mse = float("inf")
self.population = []
self.graph = nx.Graph()
self.generation = 0
self.init_population()
pass
def print_graph(self, labels=False):
def hierarchy():
"""
Reference:
https://stackoverflow.com/questions/29586520/can-one-get-hierarchical-graphs-from-networkx-with-python-3/29597209
https://networkx.github.io/documentation/latest/reference/generated/networkx.drawing.nx_pylab.draw.html#networkx.drawing.nx_pylab.draw
"""
pos = {}
row, col, last_len = 0, 0, 1
max_col, max_row = 1, 1
for name in self.graph.nodes():
if len(name) > last_len:
last_len = len(name)
row += 1
col = 0
x = row
y = col
pos[name] = (x, y)
col += 1
max_col = max(max_col, col)
max_row = max(max_row, row)
return pos, max_row, max_col
pos, max_row, max_col = hierarchy()
plt.figure(figsize=(max_row, max_col / 2))
nx.draw(self.graph, pos=pos, node_color="turquoise", edge_color="gray")
if labels:
text = nx.draw_networkx_labels(self.graph, pos)
for _, t in text.items():
t.set_rotation(25)
plt.savefig("family_tree.png")
def init_population(self):
"""Init population of NNs according to hyper parameters."""
if self.population_size > 52:
raise Warning(
"Visualization for population sizes greater than 52 is currently unsupported."
)
self.population = []
for index in range(self.population_size):
name = ALPHABET[index]
self.population.append(
neural_network.NeuralNetwork(
self.input_size,
self.hidden_layer_size,
self.output_size,
self.learning_rate,
epochs=self.epochs,
name=name,
verbose=self.verbose,
)
)
self.graph.add_node(name)
# self.print_graph()
def select(self, test_x, test_y):
"""Using cases, apply lexicase selection to population."""
def check_case(case, estimator):
"""Return score for estimator on case."""
if case == "mse":
# predict y_hat using test_x
y_hat = estimator.predict(test_x)
# compute a diff with test_y and y_hat
mse = np.mean((test_y - y_hat) ** 2)
# updating best model
if mse <= self.best_mse:
self.best_model = estimator
self.best_mse = mse
return mse
elif case == "l1":
weights = estimator.get_weights()
w1 = weights[W1_INDEX]
w2 = weights[W2_INDEX]
# compute l2 norm with the weight matricies
l2 = np.linalg.norm(w1, ord=1) + np.linalg.norm(w2, ord=1)
return l2
elif case == "l2":
weights = estimator.get_weights()
w1 = weights[W1_INDEX]
w2 = weights[W2_INDEX]
# compute l2 norm with the weight matricies
l2 = np.linalg.norm(w1, ord=2) + np.linalg.norm(w2, ord=2)
return l2
elif case == "time":
return float("inf")
selected = []
while len(selected) < self.selection_size:
pool = set(self.population) - set(selected)
case_bests = [] # to randomly pick from later
for case in self.cases:
best = {}
for estimator in pool:
score = check_case(case, estimator)
best[str(score)] = estimator
key = sorted(best.keys())[0]
case_bests.append(best[key])
random_pick = np.random.randint(0, len(case_bests))
selected.append(case_bests[random_pick])
self.population = selected
# now recombine
def mutate(self, train_x, train_y):
"""Apply mutation to population, or subset passed."""
for estimator in self.population: # for each selected estimator
if self.hybrid: # hybrid GA
estimator.fit(train_x, train_y) # SGD
else: # normal GA
weights = estimator.get_weights()
# BUG: assuming mutable
for matrix in weights:
noise = np.random.normal(
loc=0.0,
scale=self.scale_of_mutation,
size=matrix.shape,
)
matrix += noise
estimator.set_weights(weights)
def recombine(self):
"""Recombine the passed subset of the population."""
children = []
child_number = 0
num_parents = len(self.population)
for _ in range(self.population_size):
first, second = np.random.choice(num_parents, 2, replace=False)
left_parent = self.population[first]
right_parent = self.population[second]
l_name = left_parent.name
r_name = right_parent.name
left = left_parent.get_weights()
right = right_parent.get_weights()
child = []
for matrix in range(4): # hardcoding 1 hidden layer
# dealing with weight matrix
w_l = left[matrix].T
w_r = right[matrix].T
height = w_l.shape[0]
assert w_l.shape == w_r.shape
# how many rows come from left
split = int(np.random.uniform(0, height))
# randomly select rows
indices = np.random.choice(height, split, replace=False)
child_matrix = []
for row in range(height):
if row in indices:
child_matrix.append(w_l[row])
else:
child_matrix.append(w_r[row])
child_matrix = np.array(child_matrix).T
child.append(child_matrix)
name = l_name + r_name + str(child_number)
children.append((child, name, l_name, r_name))
child_number += 1
new_population = []
for weights, name, l_name, r_name in children:
if l_name == r_name:
raise ValueError("No Cloning!")
new_population.append(
neural_network.NeuralNetwork(
self.input_size,
self.hidden_layer_size,
self.output_size,
self.learning_rate,
weights=weights,
epochs=self.epochs,
name=name,
verbose=self.verbose,
)
)
self.graph.add_node(name)
self.graph.add_edges_from([(l_name, name), (r_name, name)])
self.population = new_population
self.generation += 1
self.print_graph(False)
def fit(self, train_x, train_y):
"""Run the algorithm."""
# init population of N networks, run = 0
# do
# evaluate all N networks
# select the K best parents using Lexicase
# run SGD as mutation on selected parents
# save parent with lowest validation error
# recombine to produce N new network
# while run < generation limit
# return best saved
height = train_x.shape[0]
split = int(np.ceil(height / 5))
indices = np.random.choice(height, split, replace=False)
test_x, test_y, X, y = [], [], [], []
for row in range(height):
if row in indices: # in test set
test_x.append(train_x[row])
test_y.append(train_y[row])
else: # in train set
X.append(train_x[row])
y.append(train_y[row])
test_x, test_y, X, y = (
np.array(test_x),
np.array(test_y),
np.array(X),
np.array(y),
)
self.init_population()
for gen_index in range(self.generations):
print("\tGeneration:", gen_index)
print("\tBest Model MSE:", self.best_mse, self.best_model)
self.select(test_x, test_y)
self.mutate(X, y)
self.recombine()
return self
def predict(self, X):
return self.best_model.predict(X)
def get_params(self, deep=False):
"""Return the params dictionary."""
params = {
"hybrid": self.hybrid,
"input_size": self.input_size,
"hidden_layer_size": self.hidden_layer_size,
"output_size": self.output_size,
"population_size": self.population_size,
"selection_size": self.selection_size,
"learning_rate": self.learning_rate,
"cases": self.cases,
"epochs": self.epochs,
"generations": self.generations,
"verbose": self.verbose,
# "best_model": self.best_model,
# "population": self.population,
}
return params
def set_params(self, **params):
"""Set params dictionary."""
self.hybrid = params["hybrid"]
self.input_size = params["input_size"]
self.hidden_layer_size = params["hidden_layer_size"]
self.output_size = params["output_size"]
self.population_size = params["population_size"]
self.selection_size = params["selection_size"]
self.learning_rate = params["learning_rate"]
self.cases = params["cases"]
self.epochs = params["epochs"]
self.generations = params["generations"]
self.verbose = params["verbose"]
# self.best_model = params["best_model"]
# self.population = params["population"]
self.best_model = None
self.best_mse = float("inf")
self.population = []
self.init_population()
return self
def write(self):
pass
def visualize(self):
pass
if __name__ == "__main__":
import main
data = main.load_dataset("data/ripple_0.0_50_200")
# init ga
input_size = data.shape[1] - 1
hidden_layer_size = 5
output_size = 1
population_size = 10
selection_size = 4
learning_rate = 1e-3
epochs = 10
generations = 10
estimator = GeneticAlgorithm(
True,
input_size,
hidden_layer_size,
output_size,
population_size,
selection_size,
learning_rate,
epochs,
generations,
)
X, y = main.split_data(data)
estimator.fit(X, y)
print(estimator)
import pickle
with open("test", "wb") as f:
pickle.dump(estimator, f)