forked from skyflynil/stylegan2
-
Notifications
You must be signed in to change notification settings - Fork 125
/
project_images.py
122 lines (104 loc) · 5.46 KB
/
project_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# from https://github.com/rolux/stylegan2encoder
import argparse
import os
import shutil
import numpy as np
import dnnlib
import dnnlib.tflib as tflib
import pretrained_networks
import projector
import dataset_tool
from training import dataset
from training import misc
def project_image(proj, src_file, dst_dir, tmp_dir, video=False):
data_dir = '%s/dataset' % tmp_dir
if os.path.exists(data_dir):
shutil.rmtree(data_dir)
image_dir = '%s/images' % data_dir
tfrecord_dir = '%s/tfrecords' % data_dir
os.makedirs(image_dir, exist_ok=True)
shutil.copy(src_file, image_dir + '/')
dataset_tool.create_from_images_raw(tfrecord_dir, image_dir, shuffle=0)
dataset_obj = dataset.load_dataset(
data_dir=data_dir, tfrecord_dir='tfrecords',
max_label_size=0, repeat=False, shuffle_mb=0
)
print('Projecting image "%s"...' % os.path.basename(src_file))
images, _labels = dataset_obj.get_minibatch_np(1)
images = misc.adjust_dynamic_range(images, [0, 255], [-1, 1])
proj.start(images)
if video:
video_dir = '%s/video' % tmp_dir
os.makedirs(video_dir, exist_ok=True)
while proj.get_cur_step() < proj.num_steps:
print('\r%d / %d ... ' % (proj.get_cur_step(), proj.num_steps), end='', flush=True)
proj.step()
if video:
filename = '%s/%08d.png' % (video_dir, proj.get_cur_step())
misc.save_image_grid(proj.get_images(), filename, drange=[-1,1])
print('\r%-30s\r' % '', end='', flush=True)
os.makedirs(dst_dir, exist_ok=True)
filename = os.path.join(dst_dir, os.path.basename(src_file)[:-4] + '.png')
misc.save_image_grid(proj.get_images(), filename, drange=[-1,1])
filename = os.path.join(dst_dir, os.path.basename(src_file)[:-4] + '.npy')
np.save(filename, proj.get_dlatents()[0])
def render_video(src_file, dst_dir, tmp_dir, num_frames, mode, size, fps, codec, bitrate):
import PIL.Image
import moviepy.editor
def render_frame(t):
frame = np.clip(np.ceil(t * fps), 1, num_frames)
image = PIL.Image.open('%s/video/%08d.png' % (tmp_dir, frame))
if mode == 1:
canvas = image
else:
canvas = PIL.Image.new('RGB', (2 * src_size, src_size))
canvas.paste(src_image, (0, 0))
canvas.paste(image, (src_size, 0))
if size != src_size:
canvas = canvas.resize((mode * size, size), PIL.Image.LANCZOS)
return np.array(canvas)
src_image = PIL.Image.open(src_file)
src_size = src_image.size[1]
duration = num_frames / fps
filename = os.path.join(dst_dir, os.path.basename(src_file)[:-4] + '.mp4')
video_clip = moviepy.editor.VideoClip(render_frame, duration=duration)
video_clip.write_videofile(filename, fps=fps, codec=codec, bitrate=bitrate)
def main():
parser = argparse.ArgumentParser(description='Project real-world images into StyleGAN2 latent space')
parser.add_argument('src_dir', help='Directory with aligned images for projection')
parser.add_argument('dst_dir', help='Output directory')
parser.add_argument('--tmp-dir', default='.stylegan2-tmp', help='Temporary directory for tfrecords and video frames')
parser.add_argument('--network-pkl', default='http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/stylegan2-ffhq-config-f.pkl', help='StyleGAN2 network pickle filename')
parser.add_argument('--vgg16-pkl', default='http://d36zk2xti64re0.cloudfront.net/stylegan1/networks/metrics/vgg16_zhang_perceptual.pkl', help='VGG16 network pickle filename')
parser.add_argument('--num-steps', type=int, default=1000, help='Number of optimization steps')
parser.add_argument('--initial-learning-rate', type=float, default=0.1, help='Initial learning rate')
parser.add_argument('--initial-noise-factor', type=float, default=0.05, help='Initial noise factor')
parser.add_argument('--verbose', type=bool, default=False, help='Verbose output')
parser.add_argument('--video', type=bool, default=False, help='Render video of the optimization process')
parser.add_argument('--video-mode', type=int, default=1, help='Video mode: 1 for optimization only, 2 for source + optimization')
parser.add_argument('--video-size', type=int, default=1024, help='Video size (height in px)')
parser.add_argument('--video-fps', type=int, default=25, help='Video framerate')
parser.add_argument('--video-codec', default='libx264', help='Video codec')
parser.add_argument('--video-bitrate', default='5M', help='Video bitrate')
args = parser.parse_args()
print('Loading networks from "%s"...' % args.network_pkl)
_G, _D, Gs = pretrained_networks.load_networks(args.network_pkl)
proj = projector.Projector(
vgg16_pkl = args.vgg16_pkl,
num_steps = args.num_steps,
initial_learning_rate = args.initial_learning_rate,
initial_noise_factor = args.initial_noise_factor,
verbose = args.verbose
)
proj.set_network(Gs)
src_files = sorted([os.path.join(args.src_dir, f) for f in os.listdir(args.src_dir) if f[0] not in '._'])
for src_file in src_files:
project_image(proj, src_file, args.dst_dir, args.tmp_dir, video=args.video)
if args.video:
render_video(
src_file, args.dst_dir, args.tmp_dir, args.num_steps, args.video_mode,
args.video_size, args.video_fps, args.video_codec, args.video_bitrate
)
shutil.rmtree(args.tmp_dir)
if __name__ == '__main__':
main()