-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcc_analytics.r
175 lines (137 loc) · 5.49 KB
/
cc_analytics.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
require(tabulizer)
require(data.table)
require(openxlsx)
require(readxl)
require(ggplot2)
extract_dbs_pdf_cc_table<-function(dbs_pdf,table_extraction=F){
#Will not be able to extract outstanding balance
#currency ?
if (!table_extraction){
temp<-tabulizer::extract_text(dbs_pdf)
temp<-str_extract_all(temp,"[0-9][0-9] [A-Z]{3} .*? ((.|\\n|\\r)*?)[0-9]([0-9|,]?)\\.[0-9]{2}[\\s](CR)?")
dates<-str_extract_all(as.character(temp[[1]]),"([0-9][0-9] [A-Z]{3})",simplify = T)
amtx<-str_extract_all(as.character(temp[[1]]),"[0-9]([0-9|,]*)\\.[0-9]{2}[\\s](CR)?",simplify = T)
item<-substr(temp[[1]],7,10000)
tbl<-data.table(
date=as.Date(dates,"%d %b"),
acct="dbs",
item=trimws(substr(item,1,str_length(item)-str_length(amtx))),
amt=suppressWarnings({as.numeric(amtx)})
)
return(tbl[!grepl("CR",amtx)]) #Excludes credit amount
}
dbs_content<-tabulizer::extract_tables(dbs_pdf,method = "stream")
dbs_content<-lapply(dbs_content,function(mat){
if(any(grepl("[0-9][0-9] [A-Z]{3}",mat[,1]))){
mat<-data.table(mat)
mat<-mat[grepl("[0-9][0-9] [A-Z]{3}",V1)]
#Handle subcard formating
mat[!grepl("[0-9][0-9] [A-Z]{3}$",V1),V2:=paste0("SUBCARD - ",stringr::str_extract(V1,"(?<=[0-9][0-9] [A-Z]{3}).*?$"))]
mat[,V1:=stringr::str_extract(V1,"[0-9][0-9] [A-Z]{3}")]
return(
data.table(date=as.Date(mat[[1]],"%d %b"),
acct="dbs",
item=apply(mat[,-c(1,ncol(mat)),with=F],1,paste0,collapse=""),
amt=as.numeric(ifelse(grepl("CR",mat[[ncol(mat)]]),paste0("-",gsub(" CR","",mat[[ncol(mat)]])),mat[[ncol(mat)]])))
)
}
return(NULL)
})
return(rbindlist(dbs_content)[order(date,item)])
}
extract_uob_pdf_cc_table<-function(uob_xls){
#currency ?
data<-data.table(readxl::read_excel(uob_xls))
acct_number<-data[4,][,2,with=F][[1]]
data<-data.table(readxl::read_excel(uob_xls,skip = 9))
return(data[,.(date=as.Date(`Posting Date`,"%d %b %Y"),acct=paste0("UOB ",acct_number),item=Description,amt=`Transaction Amount(Local)`)])
}
extract_amex_csv_cc_table<-function(amex_csv){
#currency ?
data<-read.csv(amex_csv,header=F)
data.table(data)[,.(date=as.Date(V1,"%d/%m/%Y"),acct='AMEX',item=V4,amt=V3)]
}
tag_spending<-function(data){
#This code needs to be cleaned up further
restaurants_dict<-c("GOODWOODPARK",
"YA KUN",
"BREADTALK",
"HUGGS",
"MCDONALD",
"WHEAT",
"BENGAWAN SOLO",
"KAMIKAZE ASIA",
"VIIO GASTROPUB PTE LTD",
"DIAN XIAO ER",
"IZAKAYA",
"STARBUCKS",
"THE BEEF STATION",
"THE MARMALADE PANTRY",
"KFC",
"TONKATSU BY MA MAISON",
"KOUFU PTE LTD",
'ORCHID LIVE SEAFOOD',
'IRON 2 NORI PTE LTD',
'PHO STOP PTE. LTD',
'PONGGOL NASI LEMAK CAFE',
'CHEERS - 500 TOA PAYOH',
'A&W - AMK',
'KAKI - AMK',
'SOUPERSTAR - TANJONG PAGA',
'GEORGES@THE COVE',
'JEWEL COFFEE',
'HAKATA IKKOUSHA',
'KORYO MART MARINE PARADE',
'FOC Sentosa Pte Ltd',
'GEORGES@THE COVE',
'KEI MARINA SQUARE')
discretionary_spending<-c(
"IKEA",
"APPLE.COM",
"APPLE ONLINE",
"M & S",
"THE ART FACULTY LTD",
"DECATHLON"
)
groceries_spending<-c(
"PRIME NOW SG",
"FINEST",
"FAIRPRICE",
"HAO MART",
"NTUC",
"COLD STORAGE",
"7-ELEVEN",
"DON DON DONKI",
"GUARDIAN",
"SHENGSIONG",
"CHEERS",
"SHENG SIONG"
)
ecommerce<-c('LAZADA',
'SHOPEE',
'AMAZON RETAIL',
'PAYPAL',
'YOUTRIP',
'AMAZON')
lifestyle_spending<-c(
"ACTIVESG"
)
travel_sightseeing_holiday<-c('SINGAPORE ZOO','RIVER SAFARI')
religion<-c('ODB MINISTRIES SG')
data[grepl("GIGA|LIBERTY WIRELESS|SPOTIFY ",item),TAG:="BILL"]
data[grepl("BUS/MRT",item),TAG:="TRANSPORT/BUSMRT"]
data[grepl("GRAB",item),TAG:="TRANSPORT/GRAB"]
data[grepl("BLUESG",item),TAG:="TRANSPORT/BLUESG"]
data[grepl("COMFORT/CITYCAB TAXI",item),TAG:="TRANSPORT/COMFORT"]
data[grepl(paste0(ecommerce,collapse = "|"),item),TAG:="RETAIL/ECOMMERCE"]
data[grepl(paste0(groceries_spending,collapse = "|"),item),TAG:="RETAIL/GROCERY"]
data[grepl("DELIVEROO.COM|DELIVEROO|FOODPANDA",item),TAG:="FOOD/ONLINE"]
data[grepl("RAFFLES HOSPITAL|NSC|SURGERY CENTRE|INTERNAL MEDICINE CENTRE",item),TAG:="HEALTH/HOSPITAL"]
data[grepl("NATIONAL UNIVERSITY OF SINGAPORE|COURSRA|POPULAR BOOK COMPANY",item),TAG:="EDUCATION"]
data[grepl(paste0(discretionary_spending,collapse = "|"),item),TAG:="RETAIL/DISCRETIONARY"]
data[grepl(paste0(restaurants_dict,collapse = "|"),item),TAG:="FOOD/RESTAURANT"]
data[grepl(paste0(travel_sightseeing_holiday,collapse = "|"),item),TAG:="LEISURE/SIGHTSEEING"]
data[grepl(paste0(lifestyle_spending,collapse = "|"),item),TAG:="LEISURE/SPORTS"]
data[grepl(paste0(religion,collapse = "|"),item),TAG:="RELIGION/GIVING"]
return(data)
}