forked from JarrettR/Stretch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvgpath.py
497 lines (420 loc) · 18.6 KB
/
svgpath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
"""This submodule contains very stripped down bare bones version of
svgpathtools module:
https://github.com/mathandy/svgpathtools
All external dependencies are removed. This code can parse path strings with
segments and arcs, calculate bounding box and that's about it. This is all
that is needed in ibom parsers at the moment.
"""
# External dependencies
from __future__ import division, absolute_import, print_function
import re
from cmath import exp
from math import sqrt, cos, sin, acos, degrees, radians, pi
def clip(a, a_min, a_max):
return min(a_max, max(a_min, a))
class Line(object):
def __init__(self, start, end):
self.start = start
self.end = end
def __repr__(self):
return 'Line(start=%s, end=%s)' % (self.start, self.end)
def __eq__(self, other):
if not isinstance(other, Line):
return NotImplemented
return self.start == other.start and self.end == other.end
def __ne__(self, other):
if not isinstance(other, Line):
return NotImplemented
return not self == other
def __len__(self):
return 2
def bbox(self):
"""returns the bounding box for the segment in the form
(xmin, xmax, ymin, ymax)."""
xmin = min(self.start.real, self.end.real)
xmax = max(self.start.real, self.end.real)
ymin = min(self.start.imag, self.end.imag)
ymax = max(self.start.imag, self.end.imag)
return xmin, xmax, ymin, ymax
class Arc(object):
def __init__(self, start, radius, rotation, large_arc, sweep, end,
autoscale_radius=True):
"""
This should be thought of as a part of an ellipse connecting two
points on that ellipse, start and end.
Parameters
----------
start : complex
The start point of the curve. Note: `start` and `end` cannot be the
same. To make a full ellipse or circle, use two `Arc` objects.
radius : complex
rx + 1j*ry, where rx and ry are the radii of the ellipse (also
known as its semi-major and semi-minor axes, or vice-versa or if
rx < ry).
Note: If rx = 0 or ry = 0 then this arc is treated as a
straight line segment joining the endpoints.
Note: If rx or ry has a negative sign, the sign is dropped; the
absolute value is used instead.
Note: If no such ellipse exists, the radius will be scaled so
that one does (unless autoscale_radius is set to False).
rotation : float
This is the CCW angle (in degrees) from the positive x-axis of the
current coordinate system to the x-axis of the ellipse.
large_arc : bool
Given two points on an ellipse, there are two elliptical arcs
connecting those points, the first going the short way around the
ellipse, and the second going the long way around the ellipse. If
`large_arc == False`, the shorter elliptical arc will be used. If
`large_arc == True`, then longer elliptical will be used.
In other words, `large_arc` should be 0 for arcs spanning less than
or equal to 180 degrees and 1 for arcs spanning greater than 180
degrees.
sweep : bool
For any acceptable parameters `start`, `end`, `rotation`, and
`radius`, there are two ellipses with the given major and minor
axes (radii) which connect `start` and `end`. One which connects
them in a CCW fashion and one which connected them in a CW
fashion. If `sweep == True`, the CCW ellipse will be used. If
`sweep == False`, the CW ellipse will be used. See note on curve
orientation below.
end : complex
The end point of the curve. Note: `start` and `end` cannot be the
same. To make a full ellipse or circle, use two `Arc` objects.
autoscale_radius : bool
If `autoscale_radius == True`, then will also scale `self.radius`
in the case that no ellipse exists with the input parameters
(see inline comments for further explanation).
Derived Parameters/Attributes
-----------------------------
self.theta : float
This is the phase (in degrees) of self.u1transform(self.start).
It is $\\theta_1$ in the official documentation and ranges from
-180 to 180.
self.delta : float
This is the angular distance (in degrees) between the start and
end of the arc after the arc has been sent to the unit circle
through self.u1transform().
It is $\\Delta\\theta$ in the official documentation and ranges from
-360 to 360; being positive when the arc travels CCW and negative
otherwise (i.e. is positive/negative when sweep == True/False).
self.center : complex
This is the center of the arc's ellipse.
self.phi : float
The arc's rotation in radians, i.e. `radians(self.rotation)`.
self.rot_matrix : complex
Equal to `exp(1j * self.phi)` which is also equal to
`cos(self.phi) + 1j*sin(self.phi)`.
Note on curve orientation (CW vs CCW)
-------------------------------------
The notions of clockwise (CW) and counter-clockwise (CCW) are reversed
in some sense when viewing SVGs (as the y coordinate starts at the top
of the image and increases towards the bottom).
"""
assert start != end
assert radius.real != 0 and radius.imag != 0
self.start = start
self.radius = abs(radius.real) + 1j * abs(radius.imag)
self.rotation = rotation
self.large_arc = bool(large_arc)
self.sweep = bool(sweep)
self.end = end
self.autoscale_radius = autoscale_radius
# Convenience parameters
self.phi = radians(self.rotation)
self.rot_matrix = exp(1j * self.phi)
# Derive derived parameters
self._parameterize()
def __repr__(self):
params = (self.start, self.radius, self.rotation,
self.large_arc, self.sweep, self.end)
return ("Arc(start={}, radius={}, rotation={}, "
"large_arc={}, sweep={}, end={})".format(*params))
def __eq__(self, other):
if not isinstance(other, Arc):
return NotImplemented
return self.start == other.start and self.end == other.end \
and self.radius == other.radius \
and self.rotation == other.rotation \
and self.large_arc == other.large_arc and self.sweep == other.sweep
def __ne__(self, other):
if not isinstance(other, Arc):
return NotImplemented
return not self == other
def _parameterize(self):
# See http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
# my notation roughly follows theirs
rx = self.radius.real
ry = self.radius.imag
rx_sqd = rx * rx
ry_sqd = ry * ry
# Transform z-> z' = x' + 1j*y'
# = self.rot_matrix**(-1)*(z - (end+start)/2)
# coordinates. This translates the ellipse so that the midpoint
# between self.end and self.start lies on the origin and rotates
# the ellipse so that the its axes align with the xy-coordinate axes.
# Note: This sends self.end to -self.start
zp1 = (1 / self.rot_matrix) * (self.start - self.end) / 2
x1p, y1p = zp1.real, zp1.imag
x1p_sqd = x1p * x1p
y1p_sqd = y1p * y1p
# Correct out of range radii
# Note: an ellipse going through start and end with radius and phi
# exists if and only if radius_check is true
radius_check = (x1p_sqd / rx_sqd) + (y1p_sqd / ry_sqd)
if radius_check > 1:
if self.autoscale_radius:
rx *= sqrt(radius_check)
ry *= sqrt(radius_check)
self.radius = rx + 1j * ry
rx_sqd = rx * rx
ry_sqd = ry * ry
else:
raise ValueError("No such elliptic arc exists.")
# Compute c'=(c_x', c_y'), the center of the ellipse in (x', y') coords
# Noting that, in our new coord system, (x_2', y_2') = (-x_1', -x_2')
# and our ellipse is cut out by of the plane by the algebraic equation
# (x'-c_x')**2 / r_x**2 + (y'-c_y')**2 / r_y**2 = 1,
# we can find c' by solving the system of two quadratics given by
# plugging our transformed endpoints (x_1', y_1') and (x_2', y_2')
tmp = rx_sqd * y1p_sqd + ry_sqd * x1p_sqd
radicand = (rx_sqd * ry_sqd - tmp) / tmp
try:
radical = sqrt(radicand)
except ValueError:
radical = 0
if self.large_arc == self.sweep:
cp = -radical * (rx * y1p / ry - 1j * ry * x1p / rx)
else:
cp = radical * (rx * y1p / ry - 1j * ry * x1p / rx)
# The center in (x,y) coordinates is easy to find knowing c'
self.center = exp(1j * self.phi) * cp + (self.start + self.end) / 2
# Now we do a second transformation, from (x', y') to (u_x, u_y)
# coordinates, which is a translation moving the center of the
# ellipse to the origin and a dilation stretching the ellipse to be
# the unit circle
u1 = (x1p - cp.real) / rx + 1j * (
y1p - cp.imag) / ry # transformed start
u2 = (-x1p - cp.real) / rx + 1j * (
-y1p - cp.imag) / ry # transformed end
# clip in case of floating point error
u1 = clip(u1.real, -1, 1) + 1j * clip(u1.imag, -1, 1)
u2 = clip(u2.real, -1, 1) + 1j * clip(u2.imag, -1, 1)
# Now compute theta and delta (we'll define them as we go)
# delta is the angular distance of the arc (w.r.t the circle)
# theta is the angle between the positive x'-axis and the start point
# on the circle
if u1.imag > 0:
self.theta = degrees(acos(u1.real))
elif u1.imag < 0:
self.theta = -degrees(acos(u1.real))
else:
if u1.real > 0: # start is on pos u_x axis
self.theta = 0
else: # start is on neg u_x axis
# Note: This behavior disagrees with behavior documented in
# http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
# where theta is set to 0 in this case.
self.theta = 180
det_uv = u1.real * u2.imag - u1.imag * u2.real
acosand = u1.real * u2.real + u1.imag * u2.imag
acosand = clip(acosand.real, -1, 1) + clip(acosand.imag, -1, 1)
if det_uv > 0:
self.delta = degrees(acos(acosand))
elif det_uv < 0:
self.delta = -degrees(acos(acosand))
else:
if u1.real * u2.real + u1.imag * u2.imag > 0:
# u1 == u2
self.delta = 0
else:
# u1 == -u2
# Note: This behavior disagrees with behavior documented in
# http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
# where delta is set to 0 in this case.
self.delta = 180
if not self.sweep and self.delta >= 0:
self.delta -= 360
elif self.large_arc and self.delta <= 0:
self.delta += 360
def point(self, t):
if t == 0:
return self.start
if t == 1:
return self.end
angle = radians(self.theta + t * self.delta)
cosphi = self.rot_matrix.real
sinphi = self.rot_matrix.imag
rx = self.radius.real
ry = self.radius.imag
# z = self.rot_matrix*(rx*cos(angle) + 1j*ry*sin(angle)) + self.center
x = rx * cosphi * cos(angle) - ry * sinphi * sin(
angle) + self.center.real
y = rx * sinphi * cos(angle) + ry * cosphi * sin(
angle) + self.center.imag
return complex(x, y)
def bbox(self):
"""returns a bounding box for the segment in the form
(xmin, xmax, ymin, ymax)."""
# a(t) = radians(self.theta + self.delta*t)
# = (2*pi/360)*(self.theta + self.delta*t)
# x'=0: ~~~~~~~~~
# -rx*cos(phi)*sin(a(t)) = ry*sin(phi)*cos(a(t))
# -(rx/ry)*cot(phi)*tan(a(t)) = 1
# a(t) = arctan(-(ry/rx)tan(phi)) + pi*k === atan_x
# y'=0: ~~~~~~~~~~
# rx*sin(phi)*sin(a(t)) = ry*cos(phi)*cos(a(t))
# (rx/ry)*tan(phi)*tan(a(t)) = 1
# a(t) = arctan((ry/rx)*cot(phi))
# atanres = arctan((ry/rx)*cot(phi)) === atan_y
# ~~~~~~~~
# (2*pi/360)*(self.theta + self.delta*t) = atanres + pi*k
# Therefore, for both x' and y', we have...
# t = ((atan_{x/y} + pi*k)*(360/(2*pi)) - self.theta)/self.delta
# for all k s.t. 0 < t < 1
from math import atan, tan
if cos(self.phi) == 0:
atan_x = pi / 2
atan_y = 0
elif sin(self.phi) == 0:
atan_x = 0
atan_y = pi / 2
else:
rx, ry = self.radius.real, self.radius.imag
atan_x = atan(-(ry / rx) * tan(self.phi))
atan_y = atan((ry / rx) / tan(self.phi))
def angle_inv(ang, q): # inverse of angle from Arc.derivative()
return ((ang + pi * q) * (360 / (2 * pi)) - self.theta) / self.delta
xtrema = [self.start.real, self.end.real]
ytrema = [self.start.imag, self.end.imag]
for k in range(-4, 5):
tx = angle_inv(atan_x, k)
ty = angle_inv(atan_y, k)
if 0 <= tx <= 1:
xtrema.append(self.point(tx).real)
if 0 <= ty <= 1:
ytrema.append(self.point(ty).imag)
return min(xtrema), max(xtrema), min(ytrema), max(ytrema)
COMMANDS = set('MmZzLlHhVvCcSsQqTtAa')
UPPERCASE = set('MZLHVCSQTA')
COMMAND_RE = re.compile("([MmZzLlHhVvCcSsQqTtAa])")
FLOAT_RE = re.compile(r"[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?")
def _tokenize_path(path_def):
for x in COMMAND_RE.split(path_def):
if x in COMMANDS:
yield x
for token in FLOAT_RE.findall(x):
yield token
def parse_path(pathdef, current_pos=0j):
# In the SVG specs, initial movetos are absolute, even if
# specified as 'm'. This is the default behavior here as well.
# But if you pass in a current_pos variable, the initial moveto
# will be relative to that current_pos. This is useful.
elements = list(_tokenize_path(pathdef))
# Reverse for easy use of .pop()
elements.reverse()
absolute = False
segments = []
start_pos = None
command = None
while elements:
if elements[-1] in COMMANDS:
# New command.
command = elements.pop()
absolute = command in UPPERCASE
command = command.upper()
else:
# If this element starts with numbers, it is an implicit command
# and we don't change the command. Check that it's allowed:
if command is None:
raise ValueError(
"Unallowed implicit command in %s, position %s" % (
pathdef, len(pathdef.split()) - len(elements)))
if command == 'M':
# Moveto command.
x = elements.pop()
y = elements.pop()
pos = float(x) + float(y) * 1j
if absolute:
current_pos = pos
else:
current_pos += pos
# when M is called, reset start_pos
# This behavior of Z is defined in svg spec:
# http://www.w3.org/TR/SVG/paths.html#PathDataClosePathCommand
start_pos = current_pos
# Implicit moveto commands are treated as lineto commands.
# So we set command to lineto here, in case there are
# further implicit commands after this moveto.
command = 'L'
elif command == 'Z':
# Close path
if not (current_pos == start_pos):
segments.append(Line(current_pos, start_pos))
current_pos = start_pos
command = None
elif command == 'L':
x = elements.pop()
y = elements.pop()
pos = float(x) + float(y) * 1j
if not absolute:
pos += current_pos
segments.append(Line(current_pos, pos))
current_pos = pos
elif command == 'H':
x = elements.pop()
pos = float(x) + current_pos.imag * 1j
if not absolute:
pos += current_pos.real
segments.append(Line(current_pos, pos))
current_pos = pos
elif command == 'V':
y = elements.pop()
pos = current_pos.real + float(y) * 1j
if not absolute:
pos += current_pos.imag * 1j
segments.append(Line(current_pos, pos))
current_pos = pos
elif command == 'C':
for i in range(4):
# ignore control points
elements.pop()
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
end += current_pos
segments.append(Line(current_pos, end))
current_pos = end
elif command == 'S':
for i in range(2):
# ignore control points
elements.pop()
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
end += current_pos
segments.append(Line(current_pos, end))
current_pos = end
elif command == 'Q':
for i in range(2):
# ignore control points
elements.pop()
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
end += current_pos
segments.append(Line(current_pos, end))
current_pos = end
elif command == 'T':
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
end += current_pos
segments.append(Line(current_pos, end))
current_pos = end
elif command == 'A':
radius = float(elements.pop()) + float(elements.pop()) * 1j
rotation = float(elements.pop())
arc = float(elements.pop())
sweep = float(elements.pop())
end = float(elements.pop()) + float(elements.pop()) * 1j
if not absolute:
end += current_pos
segments.append(Arc(current_pos, radius, rotation, arc, sweep, end))
current_pos = end
return segments