-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathadversary.py
265 lines (203 loc) · 8.31 KB
/
adversary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python
# -*- encoding:utf-8 -*-
import os
import torch
from tqdm import tqdm
from torch.distributions.uniform import Uniform
from evalution import evaluate
os.environ['CUDA_VISIBLE_DEVICES'] = ""
# FGSM training class
class FGSM(object):
def __init__(self, model, embed_name, epsilon=8/255, alpha=10/255):
'''
model: model class
embed_name: name of embedding
epsilon: radius
alpha: step size
'''
self.model = model
self.embed_name = embed_name
self.epsilon = torch.tensor([epsilon])
self.__alpha = alpha
# initialize delta from uniform distribution
self.__uniform_init = Uniform(-self.epsilon, self.epsilon)
self.backup = {}
def attack(self):
'''
delta = Uniform(-epsilon, epsilon)
delta = delta + alpha * sign(gradient of delta)
delta = max(min(delta, epsilon), -epsilon)
'''
for name, param in self.model.named_parameters():
if param.requires_grad and self.embed_name in name:
self.backup[name] = param.data.clone()
delta = self.__uniform_init.sample()
delta.requires_grad = True
delta = delta + self.__alpha * torch.sign(param.grad)
delta = torch.max(torch.min(delta, self.epsilon), -self.epsilon)
param.data.add_(delta)
def restore(self):
for name, param in self.model.named_parameters():
if param.requires_grad and self.embed_name in name:
assert name in self.backup
param.data = self.backup[name]
self.backup = {}
# PGD training class
class PGD(object):
def __init__(self, model, embed_name, epsilon=8/255, alpha=10/255):
self.__model = model
self.__embed_name = embed_name
self.__epsilon = torch.tensor([epsilon])
self.__alpha = alpha
self.__embed_backup = {}
self.__grad_backup = {}
def attack(self, is_first_attack=False):
for name, param in self.__model.named_parameters():
if param.requires_grad and self.__embed_name in name:
if is_first_attack:
self.__embed_backup[name] = param.data.clone()
param.data = self.project(name, param)
def restore(self):
for name, param in self.__model.named_parameters():
if param.requires_grad and self.__embed_name in name:
assert name in self.__embed_backup
param.data = self.__embed_backup[name]
self.__embed_backup = {}
def project(self, param_name, param):
'''
delta = delta of last PGD step
delta = delta + alpha * sign(gradient of delta)
delta = max(min(delta, epsilon), -epsilon)
'''
delta = param.data - self.__embed_backup[param_name]
delta = delta + self.__alpha * torch.sign(param.grad)
delta = torch.max(torch.min(delta, self.__epsilon), -self.__epsilon)
return self.__embed_backup[param_name] + delta
def backup_grad(self):
for name, param in self.__model.named_parameters():
if param.requires_grad and param.grad is not None:
self.__grad_backup[name] = param.grad.clone()
def restore_grad(self):
for name, param in self.__model.named_parameters():
if param.requires_grad and param.grad is not None:
param.grad = self.__grad_backup[name]
# normal training function
def normal_train(
model, train_iter, test_iter, save_path,
optimizer, epochs=20
):
loss_fn = torch.nn.CrossEntropyLoss()
for i in tqdm(range(1, epochs+1)):
print(f'Epoch {i}:')
model.train()
for X, y in tqdm(train_iter):
loss = model(X)
loss = loss_fn(loss, y)
loss.backward()
optimizer.step()
optimizer.zero_grad()
# validation
valid_loss, valid_acc = evaluate(test_iter, model, loss_fn)
print(f'loss = {valid_loss}, acc = {valid_acc}')
# save model checkpoint file every 5 epochs
if i % 5 == 0:
torch.save(model.state_dict(), f'{save_path}/normal_model-{i}.pth')
print(f'Model checkpoint {i} saved!')
# FGSM training function
def fgsm_train(
model, train_iter, test_iter, save_path,
optimizer, epochs=20, embed_name='embeddings.'
):
loss_fn = torch.nn.CrossEntropyLoss()
fgsm = FGSM(model, embed_name)
for i in tqdm(range(1, epochs+1)):
print(f'Epoch {i}:')
model.train()
for X, y in tqdm(train_iter):
# normal training steps
loss = model(X)
loss = loss_fn(loss, y)
loss.backward()
# FGSM adversarial training steps
fgsm.attack()
adv_loss = model(X)
adv_loss = loss_fn(adv_loss, y)
adv_loss.backward()
fgsm.restore()
# update weights
optimizer.step()
optimizer.zero_grad()
# validation
valid_loss, valid_acc = evaluate(test_iter, model, loss_fn)
print(f'loss = {valid_loss}, acc = {valid_acc}')
# save model checkpoint file every 5 epochs
if i % 5 == 0:
torch.save(model.state_dict(), f'{save_path}/fgsm_model-{i}.pth')
print(f'Model checkpoint {i} saved!')
# PGD training function
def pgd_train(
model, train_iter, test_iter, save_path,
optimizer, replays=3, embed_name='embeddings.', epochs=20):
loss_fn = torch.nn.CrossEntropyLoss()
pgd = PGD(model, embed_name)
for i in tqdm(range(1, epochs+1)):
print(f'Epoch {i}:')
model.train()
for X, y in tqdm(train_iter):
# normal training steps
loss = model(X)
loss = loss_fn(loss, y)
loss.backward()
pgd.backup_grad()
# PGD adversarial training steps
for t in range(replays):
pgd.attack(is_first_attack=(t==0))
if t != replays-1:
optimizer.zero_grad()
else:
pgd.restore_grad()
adv_loss = model(X)
adv_loss = loss_fn(adv_loss, y)
adv_loss.backward()
pgd.restore()
# update weights
optimizer.step()
optimizer.zero_grad()
# validation
valid_loss, valid_acc = evaluate(test_iter, model, loss_fn)
print(f'loss = {valid_loss}, acc = {valid_acc}')
# save model checkpoint file every 5 epochs
if i % 5 == 0:
torch.save(model.state_dict(), f'{save_path}/pgd_model-{i}.pth')
print(f'Model checkpoint {i} saved!')
# free training function
def free_train(
model, train_iter, test_iter,
optimizer,loss_fn, save_path,
replays=5, epochs=5
):
epsilon = torch.tensor([8/255])
model.perturbation = torch.tensor([0.0])
model.perturbation.requires_grad = True
for i in tqdm(range(1, epochs+1)):
print(f'Epoch {i}:')
model.train()
for X, y in tqdm(train_iter):
for _ in range(replays):
loss = model(X)
loss = loss_fn(loss, y)
optimizer.zero_grad()
loss.backward()
grad = model.embeddings.weight.grad[:X.size(1)]
model.perturbation = model.perturbation + epsilon * torch.sign(grad)
model.perturbation.data = torch.max(
torch.min(model.perturbation, epsilon), -epsilon
)
optimizer.step()
grad.zero_()
# validation
valid_loss, valid_acc = evaluate(test_iter, model, loss_fn)
print(f'loss = {valid_loss}, acc = {valid_acc}')
# save model checkpoint file
torch.save(model.state_dict(), f'{save_path}/free_model-{i}.pth')
print(f'Model checkpoint {i} saved!')