-
Notifications
You must be signed in to change notification settings - Fork 553
/
runMultiClassLogisticRegressionNeuralNetwork.m
47 lines (33 loc) · 1.57 KB
/
runMultiClassLogisticRegressionNeuralNetwork.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
%% One-vs-all
%% Initialization
clear ; close all; clc
%% Setup the parameters you will use for this part of the exercise
inputLayerSize = 400; % 20 pixel x 20 pixel input Images of Digits
numberOfLabels = 10; % 10 labels, from 1 to 10
% (note that we have mapped "0" to label 10)
%% =========== Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
% Load Training Data
fprintf('Loading and Visualizing Data ...\n')
load('inputTrainingSetOf5000HandwrittenDigitsAndLabels.mat'); % training data stored in arrays X, y
m = size(X, 1);
% Randomly select 100 data points to display
randomIndices = randperm(m);
randomlySelectedIndices = X(randomIndices(1:100), :);
displayData(randomlySelectedIndices);
title('Example of 100 Randomly Selected Digits from Input Training Set');
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ============ Vectorize Logistic Regression ============
% one-vs-all classification for the handwritten digit dataset
% using vectorized logistic regression with regularization
fprintf('\nTraining One-vs-All Logistic Regression...\n')
lambda = 0.1;
[all_theta] = oneVsAll(X, y, numberOfLabels, lambda);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================ Predict for One-Vs-All ================
% predictions = m x 1 column vector
predictions = predictOneVsAll(all_theta, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(predictions == y)) * 100);