-
Notifications
You must be signed in to change notification settings - Fork 553
/
predict.m
31 lines (23 loc) · 870 Bytes
/
predict.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
function predictions = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
% trained weights of a neural network (Theta1, Theta2)
% Useful values
numberOfTrainingExamples = size(X, 1);
numberOfLabels = size(Theta2, 1);
% You need to return the following variables correctly
p = zeros(size(X, 1), 1); % p = m x 1 column vector
X = [ones(numberOfTrainingExamples, 1) X];
% Now X = 5000 x 401 matrix
% a1 = 5000 x 401 matrix
a1 = X;
% Theta1' = 401 x 25 matrix
% a2 = 5000 x 25 matrix
a2 = sigmoid(a1 * Theta1');
a2 = [ones(numberOfTrainingExamples, 1) a2]; % add an extra column vector of 1's
% Now a2 = 5000 x 26 matrix
% Theta2' = 26 x 10 matrix
% a3 = 5000 x 10 matrix
a3 = sigmoid(a2 * Theta2');
[M, predictions] = max(a3, [], 2);
end