-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplanet_testing.py
191 lines (164 loc) · 6.97 KB
/
planet_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from all_funcs import *
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mat
import numpy as np
from numpy.linalg import norm
from tqdm import tqdm
import os.path
from palettable.wesanderson import Aquatic2_5, Cavalcanti_5
fig = plt.figure()
ax = plt.axes(projection = '3d')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
phi_array = np.linspace(0, 2*np.pi, 80)
full_field_lines = []
for phi in phi_array:
field_lines = multilines(phi, 12, 0, 2*np.pi, coeffs=uranus, ds=0.01, maxits=100000, plot=False)
full_field_lines.append(field_lines)
for field_line in field_lines:
(x, y, z) = field_line
ax.plot3D(x, y, z, color=Aquatic2_5.mpl_colors[0])
fpath = 'Neptune_Fields/Uranus_quadrupole_field_80phi_12theta.npy'
with open(fpath, 'wb') as file:
np.save(file, full_field_lines)
# all_moons = ['Miranda', 'Ariel', 'Umbriel', 'Titania', 'Oberon']
# for i, moon in enumerate(all_moons):
# orbital_points, T_arr = orbit(moon, 200, 1, relative=False)
# x, y, z = spherical2cartesian(orbital_points)
# ax.plot3D(x, y, z, color=Cavalcanti_5.mpl_colors[i], label = moon)
# orbital_points, T_arr = orbit('Triton', 200, 1, relative=True)
# x, y, z = spherical2cartesian(orbital_points)
# ax.plot3D(x, y, z, color=Cavalcanti_5.mpl_colors[4], label = 'Triton')
# plt.legend()
# plt.show()
###### Plotting range of footpoints for a single position on lat-long plot ######
# phi = 0
# moon = 'Titania'
# footpoints, trueFoot = random_footpoints(100, moon, phi, True)
# fpath = 'Titania_phi-0_n-100.npy'
# fpathTrue = 'Titania_phi-0_true.npy'
# with open(fpath, 'wb') as file:
# np.save(file, footpoints)
# with open(fpathTrue, 'wb') as file:
# np.save(file, np.asarray(trueFoot))
# with open(fpath, 'rb') as file:
# footpoints = np.load(file, allow_pickle=True)
# with open(fpathTrue, 'rb') as file:
# trueFoot = np.load(file, allow_pickle=True)
# x, y, z = map(list, zip(*footpoints))
# lat, longt = cartesian2latlong(x, y, z)
# trueLat, trueLongt = cartesian2latlong(*trueFoot)
def makeThisAPlottingFunc():
"""
Make this a general plotting func later.
"""
plt.plot(trueLongt, trueLat, 'ro', label = r"Accepted $g_n^m,~h_n^m$")
plt.plot(longt, lat, 'x', label = r"Random $g_n^m,~h_n^m$")
plt.annotate(f"{moon}, phi = {phi}", (0.7, 0.05), xycoords = 'axes fraction')
plt.xlabel(r'Longitude ($^\circ$)')
plt.ylabel(r'Latidude ($^\circ$)')
plt.legend()
plt.show()
###### Histograms ######
def histograms_dep():
"""
Histograms of angular deviation due to uncertainty of harmonic coefficients.
"""
lat_devs = []
longt_devs = []
latitudes = []
longitudes = []
for fp in footpoints:
x, y, z = fp
latitude, longitude = cartesian2latlong(x, y, z)
latitudes.append(latitude)
longitudes.append(longitude)
lat_devs.append(trueLat - latitude)
longt_devs.append(trueLongt - longitude)
# fig, ax1 = plt.subplots(3, 1, sharex = True)
fig = plt.figure()
title_ax = fig.add_subplot(111, frameon=False)
# hide tick and tick label of the big axis
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
title_ax.set_ylabel("Frequency Density")
title_ax.set_xlabel(r"Deviation from Accepted Footpoint ($^\circ$)")
ax1 = fig.add_subplot(3,1,1)
ax1.hist(lat_devs, bins='auto', color='b', edgecolor='k', label="Latitude") #latitude deviations histogram
ax1.axvline(mean_lat_dev, color='k', linestyle='dashed', linewidth=1, label = f"Mean: {round(mean_lat_dev, 3)}")
ax1.legend()
ax2 = fig.add_subplot(3,1,2)
ax2.hist(longt_devs, bins='auto', color='c', edgecolor='k', label = "Longitude") #longitude deviations histogram
ax2.axvline(mean_long_dev, color='k', linestyle='dashed', linewidth=1, label = f"Mean: {round(mean_long_dev, 3)}")
ax2.legend()
ax3 = fig.add_subplot(313)
ax3.hist([ang*180/np.pi for ang in ang_dev], bins='auto', edgecolor='k', label = 'Absolute Angle')
ax3.axvline(mean_ang_dev*180/np.pi, color = 'k', linestyle='dashed', label=f"Mean: {round(mean_ang_dev*180/np.pi, 3)}")
ax3.legend()
plt.show()
# fig, ax2 = plt.subplots(2, 1)
# ax2[0].hist(latitudes, bins='auto') #latitudes histogram
# ax2[0].axvline(trueLat, color='k', linestyle='dashed', linewidth=1)
# ax2[1].hist(longitudes, bins='auto') #longitudes histogram
# ax2[1].axvline(trueLongt, color='k', linestyle='dashed', linewidth=1)
############# ORBIT TESTING #############
# set up 3d axes
# ax = plt.axes(projection = '3d')
# ax.set_xlabel('x')
# ax.set_ylabel('y')
# ax.set_zlabel('z')
# with tqdm(total=50, desc="FOOTPOINTS") as bar:
# footpoints = []
# for phi in np.linspace(0, 2*np.pi, 50):
# start_pos = [17.188, (np.pi/2 - 0.00593), phi]
# x, y, z = field_trace(start_pos, uranus, 0.005, 200000)
# # point = (x[-1], y[-1], z[-1])
# # footpoints.append(point)
# ax.plot3D(x, y, z, color=Cavalcanti_5.mpl_colors[3])
# bar.update()
# print(len(footpoints))
# x, y, z = map(list, zip(*footpoints))
def plot_orbits(moons_list, num, num_orbits, relative = False):
"""
Plots all orbital paths for moons in a 'moons_list', in sidereal or planet
rest frame, on 3d axes. Also plots planet for scale.
PARAMS
-----------------------------------------------------------------------------
moons_list - array or list; contains only elements of type str, which must
be one of the Uranian or Neptunian moons.
relative - bool; if false, orbits plotted in sidereal rest frame. Otherwise,
plotted in planet rest frame.
"""
# initialise lists
x_ptp_arr = []
y_ptp_arr = []
z_ptp_arr = []
# plot each moon in list
for i, moon in enumerate(moons_list):
orbital_points, T_arr = orbit(moon, num, num_orbits, relative=relative) # retrieve orbital path
x, y, z = spherical2cartesian(orbital_points) # convert to Cartesian
ax.plot3D(x, y, z, color=Cavalcanti_5.mpl_colors[i], label = moon)
# save peak-to-peak width of orbital path in each co-ord.
x_ptp_arr.append(np.ptp(x))
y_ptp_arr.append(np.ptp(y))
z_ptp_arr.append(np.ptp(z))
# plot planet.
u, v = np.mgrid[0:2*np.pi:50j, 0:np.pi:25j]
a = np.cos(u)*np.sin(v)
b = np.sin(u)*np.sin(v)
c = np.cos(v)
# find maximum bound for each coordinate
x_len = max(x_ptp_arr)
y_len = max(y_ptp_arr)
# maximum z-bound either set by orbit or by planet, must compare both
z_len = max(max(z_ptp_arr), np.ptp(c))
# set aspect ratio by largest path in each dimension -> no squished paths or planets
ax.set_box_aspect((x_len, y_len, z_len))
ax.plot_wireframe(a, b, c, color=Aquatic2_5.mpl_colors[0])
plt.legend()
plt.show()
# Plotting the different planetary systems
# uranus_moons = ['Miranda', 'Ariel', 'Umbriel', 'Titania', 'Oberon']
# plot_orbits(uranus_moons)
# plot_orbits(uranus_moons, 200, 1, True)