-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvergence_tests.py
119 lines (106 loc) · 4.88 KB
/
convergence_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from all_funcs import *
def convergence_test(moon, pos, n_min, n_max, step):
n_array = np.arange(n_min, n_max+1, step)
ang_dev_arr_f = []
ang_dev_arr_b = []
lat_dev_arr_f = []
lat_dev_arr_b = []
long_dev_arr_f = []
long_dev_arr_b = []
for n in n_array:
footpoints_f, footpoints_b, trueFoot_f, trueFoot_b = random_footpoints(n, moon, pos, True)
mean_ang_dev_f, mean_lat_dev_f, mean_long_dev_f, mean_ang_dev_b, mean_lat_dev_b, mean_long_dev_b = angular_deviation([(pos, footpoints_f)], [(pos, trueFoot_f)], [(pos, footpoints_b)], [(pos, trueFoot_b)])
(pos, ang_dev_f) = mean_ang_dev_f[0]
ang_dev_arr_f.append(ang_dev_f)
(pos, ang_dev_b) = mean_ang_dev_b[0]
ang_dev_arr_b.append(ang_dev_b)
(pos, lat_dev_f) = mean_lat_dev_f[0]
lat_dev_arr_f.append(lat_dev_f)
(pos, lat_dev_b) = mean_lat_dev_b[0]
lat_dev_arr_b.append(lat_dev_b)
(pos, long_dev_f) = mean_long_dev_f[0]
long_dev_arr_f.append(long_dev_f)
(pos, long_dev_b) = mean_long_dev_b[0]
long_dev_arr_b.append(long_dev_b)
return n_array, ang_dev_arr_f, ang_dev_arr_b, lat_dev_arr_f, lat_dev_arr_b, long_dev_arr_f, long_dev_arr_b
n_min = 20
n_max = 250
step = 10
# arrs = convergence_test('titania', [17.07, np.pi/2, np.pi], n_min, n_max, step)
_fpaths = ['arange', 'angdevs_f', 'angdevs_b', 'latdev_f', 'latdev_b', 'longdev_f', 'longdev_b']
fpaths = ['Titania/' + path + f'_{n_min}_{n_max}_{step}_phi_pi.npy' for path in _fpaths]
# for arr, path in zip(list(arrs), fpaths):
# with open(path, 'wb') as file:
# np.save(file, arr)
with open(fpaths[0], 'rb') as file:
n_array = np.load(file, allow_pickle=True)
with open(fpaths[1], 'rb') as file:
angdevs_f = np.load(file, allow_pickle=True)
with open(fpaths[2], 'rb') as file:
angdevs_b = np.load(file, allow_pickle=True)
with open(fpaths[3], 'rb') as file:
latdev_f = np.load(file, allow_pickle=True)
with open(fpaths[4], 'rb') as file:
latdev_b = np.load(file, allow_pickle=True)
with open(fpaths[5], 'rb') as file:
longdev_f = np.load(file, allow_pickle=True)
with open(fpaths[6], 'rb') as file:
longdev_b = np.load(file, allow_pickle=True)
# n_array = arrs[0]
# for i in range(1, len(arrs)):
# plt.plot(n_array, arrs[i], label = _fpaths[i])
def forward_backward_plots():
# Make plot of forward and backward footpoint deviations
# for ang. dev, lat, long. Comment/uncomment as necessary.
fig, axs = plt.subplots(2, 1, sharex=True)
fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
plt.xlabel("No. random fieldlines")
plt.ylabel(r"Ang. deviation squared ($^{\circ}$)")
# plt.ylabel("Angular deviation (rad)")
# axs[0].plot(n_array, angdevs_f, label = 'Forward')
# plt.plot(n_array, angdevs_b, label = 'Backward')
# GROUP BY LAT-LONG
# axs[0].set_title("Latitude")
# axs[0].plot(n_array, [lat**2 for lat in latdev_f], label = "Forward")
# axs[0].plot(n_array, [lat**2 for lat in latdev_b], label = "Backward")
# axs[0].legend()
# axs[1].set_title("Longitude")
# axs[1].plot(n_array, [long**2 for long in longdev_f], label = "Forward")
# axs[1].plot(n_array, [long**2 for long in longdev_b], label = "Backward")
# axs[1].legend()
# GROUP BY FORWARD-BACKWARD
axs[0].set_title("Field Into Planet")
axs[0].plot(n_array, [lat**2 for lat in latdev_f], label = "Latitude")
axs[0].plot(n_array, [long**2 for long in longdev_f], label = "Longitude")
axs[0].legend()
axs[1].set_title("Field Out Of Planet")
axs[1].plot(n_array, [lat**2 for lat in latdev_b], label = "Latitude")
axs[1].plot(n_array, [long**2 for long in longdev_b], label = "Longitude")
axs[1].legend()
# plt.ylabel("Longitudinal deviation (rad)")
# plt.plot(n_array, longdev_f, label = "Forward")
# plt.plot(n_array, longdev_b, label = "Backward")
plt.show()
def triple_angle_plots():
# Make plot of ang, lat, long deviations for both forwards
# and backwards separately.
fig, axs = plt.subplots(2,1, sharex=True)
fig.add_subplot(111, frameon=False)
# hide tick and tick label of the big axis
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
plt.xlabel("Num. Random Fieldlines")
plt.ylabel("Mean deviation from non-random footpoint (rad)")
axs[0].plot(n_array, angdevs_f, label="Angle")
axs[0].plot(n_array, latdev_f, label = "Latitude")
axs[0].plot(n_array, longdev_f, label = "Longitude")
axs[0].set_title("Fieldlines into planet")
axs[0].legend()
axs[1].plot(n_array, angdevs_b, label="Angle")
axs[1].plot(n_array, latdev_b, label = "Latitude")
axs[1].plot(n_array, longdev_b, label = "Longitude")
axs[1].set_title("Fieldlines out of planet")
axs[1].legend()
plt.show()
# triple_angle_plots()
forward_backward_plots()